Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.4.393

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique  

Ghannadpour, S. Amir M. (Faculty of New Technologies Engineering, Shahid Beheshti University)
Khajeh, Selma (Faculty of New Technologies Engineering, Shahid Beheshti University)
Publication Information
Advances in nano research / v.13, no.4, 2022 , pp. 393-406 More about this Journal
Abstract
In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.
Keywords
FG small-scaled plates; length scale; modified couple stress theory; modified strain gradient theory; nonlinear bending; post-buckling behavior;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021a), "Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory", Compos. Struct., 262, 113337. https://doi.org/10.1016/j.compstruct.2020.113337   DOI
2 Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021b), "Trigonometric solution for the bending analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in hygro-thermal environment", Mathematics, 9(5), 1-22. https://doi.org/10.3390/math9050567   DOI
3 Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021c), "Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates", Nanomaterials, 11(1), 87. https://doi.org/10.3390/nano11010087   DOI
4 Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-198. http://doi.org/10.12989/anr.2018.6.3.279.   DOI
5 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
6 Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 909-923. https://www.jstor.org/stable/24901442.
7 Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.   DOI
8 Ghannadpour, S.A.M. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311.   DOI
9 Movassagh, A.A. and Mahmoodi, M.J. (2013), "A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory", Eur. J. Mech. A Solids, 40, 50-59. https://doi.org/10.1016/j.euromechsol.2012.12.008.   DOI
10 Nix, W.D. (1989), "Mechanical properties of thin films", Metall. Transact. A, 20(11), 2217. https://doi.org/10.1007/BF02666659.   DOI
11 Avey, M., Fantuzzi, N., Sofiyev, A.H. and Kuruoglu, N. (2021), "Nonlinear vibration of multilayer shell-type structural elements with double curvature consisting of CNT patterned layers within different theories", Compos. Struct., 275, 114401. https://doi.org/10.1016/j.compstruct.2021.114401.   DOI
12 Ovesy, H.R., Ghannadpour, S.A.M. and Nassirnia, M. (2015), "Post-buckling analysis of rectangular plates comprising functionally graded strips in thermal environments", Comput. Struct, 147, 209-215. https://doi.org/10.1016/j.compstruc.2014.09.011.   DOI
13 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.   DOI
14 Akgoz, B. and Civalek, O . (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.   DOI
15 Alinia, M.M. and Ghannadpour, S.A.M. (2009), "Nonlinear analysis of pressure loaded FGM plates", Compos. Struct., 88(3), 354-359. https://doi.org/10.1016/j.compstruct.2008.04.013.   DOI
16 Ansari, R., Faghih Shojaei, M., Shakouri, A.H. and Rouhi, H. (2016), "Nonlinear bending analysis of first-order shear deformable microscale plates using a strain gradient quadrilateral element", J. Comput. Nonlinear Dyn., 11(5). https://doi.org/10.1115/1.4032552.   DOI
17 Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Darabi, M.A. (2015), "Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position", Compos. Struct., 127, 87-98. https://doi.org/10.1016/j.compstruct.2015.02.082.   DOI
18 Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.   DOI
19 Bacciocchi, M., Fantuzzi, N., Luciano, R. and Tarantino, A.M. (2021), "Linear eigenvalue analysis of laminated thin plates including the strain gradient effect by means of conforming and nonconforming rectangular finite elements", Comput. Struct., 257, 106676. https://doi.org/10.1016/j.compstruc.2021.106676.   DOI
20 Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solid Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004.   DOI
21 Tuna, M. and Trovalusci, P. (2020), "Scale dependent continuum approaches for discontinuous assemblies: 'Explicit' and 'implicit' non-local models", Mech. Res. Commun., 103, 103461. https://doi.org/10.1016/j.mechrescom.2019.103461   DOI
22 Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech. A Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005.   DOI
23 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
24 Zibaei, I., Rahnama, H., Taheri-Behrooz, F. and Shokrieh, M. M. (2014), "First strain gradient elasticity solution for nanotubereinforced matrix problem", Compos. Struct., 112, 273-282. https://doi.org/10.1016/j.compstruct.2014.02.023   DOI
25 Tavakolian, F., Farrokhabadi, A. and Mirzaei, M. (2017), "Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory", Microsyst. Technol., 23(4), 839-848. https://doi.org/10.1007/s00542-015-2785-z.   DOI
26 Papargyri-Beskou, S. and Beskos, D.E. (2008), "Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates", Arch. Appl. Mech., 78(8), 625-635. https://doi.org/10.1007/s00419-007-0166-5.   DOI
27 Papargyri-Beskou, S., Giannakopoulos, A.E. and Beskos, D.E. (2010), "Variational analysis of gradient elastic flexural plates under static loading", Int. J. Solids Struct., 47(20), 2755-2766. https://doi.org/10.1016/j.ijsolstr.2010.06.003.   DOI
28 Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.   DOI
29 Sheng, H., Li, H., Lu, P. and Xu, H. (2010), "Free vibration analysis for micro-structures used in MEMS considering surface effects", J. Sound Vib., 329(2), 236-246. https://doi.org/10.1016/j.jsv.2009.08.035.   DOI
30 Taghizadeh, M., Ovesy, H. R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755.   DOI
31 Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023.   DOI
32 Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.   DOI
33 Ghannadpour, S.A.M., Karimi, M. and Tornabene, F. (2019), "Application of plate decomposition technique in nonlinear and post-buckling analysis of functionally graded plates containing crack", Compos. Struct., 220, 158-167. https://doi.org/10.1016/j.compstruct.2019.03.025.   DOI
34 Eringen, A.C. (1967), "Theory of micropolar plates", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 18(1), 12-30. https://doi.org/10.1007/BF01593891.   DOI
35 Fantuzzi, N., DENIZ, A., Kuruoglu, N. and Sofiyev, A.H. (2021), "Modeling and solution of large amplitude vibration problem of construction elements made of nanocomposites using shear deformation theory", Materials, 14(14), 3843. https://doi.org/10.3390/ma14143843.   DOI
36 Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.   DOI
37 Ghannadpour, S.A.M., Moradi, F. and Tornabene, F. (2020), "Exact analytical solutions to the problem of relative postbuckling stiffness of thin nonlocal graphene sheets", Thin Wall. Struct., 151, 106712. https://doi.org/10.1016/j.tws.2020.106712.   DOI
38 Mahmure, A., Sofiyev, A.H., Fantuzzi, N. and Kuruoglu, N. (2021), "Primary resonance of double-curved nanocomposite shells using nonlinear theory and multi-scales method: Modeling and analytical solution", Int. J. Nonlinear Mech., 137, 103816. https://doi.org/10.1016/j.ijnonlinmec.2021.103816.   DOI
39 Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.   DOI
40 Hadjesfandiari, A.R. and Dargush, G.F. (2016), "Couple stress theories: Theoretical underpinnings and practical aspects from a new energy perspective", arXiv, 1611, 10249.
41 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nano plate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.   DOI
42 Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.   DOI
43 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946.   DOI
44 Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z.   DOI
45 Ke, L.L., Yang, J., Kitipornchai, S. and Bradford, M.A. (2012), "Bending, buckling and vibration of size-dependent functionally graded annular microplates", Compos. Struct., 94(11), 3250-3257. https://doi.org/10.1016/j.compstruct.2012.04.037.   DOI
46 Hassanpour, P.A., Cleghorn, W.L., Esmailzadeh, E. and Mills, J.K. (2007), "Vibration analysis of micro-machined beam-type resonators", J. Sound Vib., 308(1-2), 287-301. https://doi.org/10.1016/j.jsv.2007.07.043.   DOI
47 Jena, S.K., Chakraverty, S. and Tornabene, F. (2019), "Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using firstorder nonlocal strain gradient model", Mater. Res. Exp., 6(8), 0850f2. https://doi.org/10.1088/2053-1591/ab2779.   DOI
48 Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E, 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.   DOI
49 Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2014), "Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane", Int. J. Eng. Sci., 81, 66-81. https://doi.org/10.1016/j.ijengsci.2014.04.005.   DOI
50 Koiter, W.T. (1969), "Couple-stresses in the theory of elasticity, I & II", Philos. Transact. Royal Soc. London B, 67, 17-44.
51 Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
52 Ghannadpour, S.A.M. and Shakeri, M. (2018), "Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression", Latin Am. J. Solid Struct., 15(4). https://doi.org/10.1590/1679-78254257.   DOI
53 Lazopoulos, K.A. (2009), "On bending of strain gradient elastic micro-plates", Mech. Res. Commun., 36(7), 777-783. https://doi.org/10.1016/j.mechrescom.2009.05.005.   DOI
54 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI