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INTRODUCTION 
 
Holstein cattle produce the majority of dairy milk in 

Korea. Similar to the breeders in other countries, Korean 
local breeders also show great interests for the genetic 
improvement of milk production traits that are directly 
related to the profitability of dairy herds. In general, milk 
yield, fat yield, and protein yield from a dairy cow are 
considered the primary selection traits (Bahreini Behzadi et 

al., 2013) in a herd. In this regard, test-day milk production 
records are widely used in many countries for the genetic 
analysis of dairy cattle. Genetic evaluation studies using 
test-day production records through various statistical 
models are used across numerous countries, such as 
repeatability models treating equal genetic correlation 
between each test-day record, multiple-trait models using 
each test-day record as different traits, or random regression 
models (RRMs) considering a covariate function of 
repeated test-day records over time (Meyer et al., 1989; 
Ptak and Schaeffer, 1993; Schaeffer and Dekkers, 1994). 

The RRMs are advantageous over other models in that 
they analyze each test-day record assuming that genetic and 
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ABSTRACT: The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using 
random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual 
variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy 
Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk 
yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of 
genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, 
year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were 
either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of 
polynomials×3 types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, 
L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) 
statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 
(MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial 
order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the 
goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability
estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 
0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages 
of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of 
the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately 
from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle 
genetic evaluations for milk production traits in Korea. (Key Words: Random Regression Model, Test Day Yield, Milk Production, 
Heritability, Holstein) 
 

Copyright © 2016 by Asian-Australasian Journal of Animal Sciences 
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), 

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Corresponding Author: K. H. Cho. Tel: +82-41-580-3362, Fax: 
+82-41-580-3369, E-mail: ckh1219@korea.kr 
Submitted Apr. 7, 2015; Revised Jul. 13, 2015; Accepted Aug. 7, 2015 



Cho et al. (2016) Asian Australas. J. Anim. Sci. 29:607-614 

 

608

non-genetic variances vary with days in milk and parity, as 
do genetic and non-genetic correlations (Liu et al., 2000a; 
Schaeffer et al., 2000). Theoretically, these models can 
extract more information from the data and allow for a more 
accurate modeling. Although they involve a large number of 
records and are more sensitive to the large number of 
parameters than the lactation model, they are more precise 
and flexible than the single-trait repeatability models or the 
multiple-trait models (Henderson, 1982; López-Romero and 
Carabaño, 2003; Andonov et al., 2013). For this reason, 
complex RRMs approaches are more popular and tend to be 
used as an international reference for national genetic 
evaluation of production traits of dairy cattle in many 
countries (Rupp and Biochard, 2003; Strabel et al., 2005). 
Nonetheless, many studies that have used RRMs and have 
compared models with homogeneous and heterogeneous 
variance classes, have proposed the use of heterogeneous 
residual variances by class because it fits the data in the 
same order of coefficients as Legendre polynomials (LP) 
(Jamrozik and Schaeffer, 1997; Mayer, 1999; Olori and Hill, 
1999; Bignardi et al., 2009; Takma and Akbas, 2009; 
Hurtado-Lugo et al., 2013). 

In Korea, national genetic evaluations for dairy 
production traits are mostly based on the 305-day lactation 
average model, using the first five lactation records as 
separate traits. Therefore, in the present study, we estimated 
the additive and permanent environmental (co)variances for 
the first lactation milk production traits and compared the 
goodnesses of RRMs fit using homogeneous and 
heterogeneous residual variances from test-day data. 

 
MATERIAL AND METHODS 

 
Animals and data recording 

A total of 3,190,654 raw data test-day records were 
collected from first parity of Holstein cows under the Dairy 
Cattle Improvement Centre of National Agricultural 
Cooperative Federation (NACF) in South Korea from 2007 
to 2014. Test-day records included milk yield (MILK), fat 
yield (FAT), protein yield (PROT), and solids-not-fat (SNF). 
Initial edits were performed on the data. Records of cows 
were discarded if they had not calved between 18 and 48 
months of age. In addition, records with test dates collected 
before 5 days in milk (DIM) and after 305 DIM, and data 
on cows with less than 8 DIM records from the respective 
lactation, were removed. Initial edits also included the 
removal of any data on herd-test day (HTD) classes with 
less than 10 records, and the removal of data on cows with 
unknown pedigree information (both parents unknown). 
This left a total of 126,980 test day records for the study. 
The total test day period was divided into 60 classes (from 5 
to 305 DIM at 5 day intervals) and 15 categories (5 to 9, 10 
to 14, 15 to 19, 20 to 29, 30 to 49, 50 to 59, 60 to 164, 165 

to 194, 195 to 229, 230 to 259, 260 to 264, 265 to 279, 280 
to 294, 295 to 300, and 300 to 305 DIM) of the 
heterogeneous residual variances. 

 
Animal pedigree 

Animal pedigrees for cows with production records 
were obtained from the Korean Animal Improvement 
Association (KAIA). A total of 39,855 animals were found 
in the pedigree dataset. Respective pedigree was traced 
back 21 generations. Approximately 46% of the animals 
were found to be inbred and the average inbreeding 
coefficient of the inbred animals was 0.019. 

 
Data analysis 

We considered RRMs with both homogeneous and 
heterogeneous residual variance components. For 
homogeneous residual variances, the original HTD factor 
was fitted as a contemporary group. However, a fixed factor 
of 60 HTD classes (HET60) and 15 HTD classes (HET15) 
were fitted to obtain heterogeneous residual variances at 
different stages of lactation. The fit for LP were considered 
up to the third order (L3), the fourth order (L4), and the 
fifth order (L5), and also included the intercept for genetic 
and permanent environments. Thus, a total of 9 models (3 
orders of polynomials×3 types of residual variance) were 
obtained for variance component analyses, such as L3-
HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-
HET60, L5-HOM, L5-HET15, and L5-HET60. Four 
seasons of calving (spring [March to May]; summer [June 
to August]; autumn [September to November]; winter 
[December to February]) were defined and fitted 
accordingly as a fixed effect of year-season in the model. A 
term for fixed regression of DIM was also included in the 
models. The (co)variance components from various models 
were obtained using the WOMBAT 6.0 software package 
(Meyer, 2007). The RRMs used were as follows: 
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where yijklm is the test-day record m of cow l made on 

day k within HTD effect i, belonging to year-season of 
calving class j; HTDi is the ith HTD effect; YSj is the jth 
year-season of calving; φklm is the LP for the test day record 
of cow l made on day k; βk is the coefficient of fixed 
regression; ukl is the coefficient for random regression of 
the additive genetic effect of the lth cow; pekl is the 
coefficient for random regression of the permanent 
environment effect of the lth cow; eijklm is the random 
residual effect; and n is the number of fitted coefficients of 
LP. 

The (co)variance structure for models was assumed to 
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where G and P are the (co)variance matrices of the 

random regression coefficients for additive genetic and 
permanent environmental effects, R is a diagonal matrix of 
residual variance, A is the additive genetic relationship 

matrix among cows, I is an identity matrix, and   is the 
Kronecker product. 

The goodnesses of fit among different models were 
tested using the logarithm of the likelihood function 
(–2logL), and Akaike information criteria (AIC) and 
Schwarz Bayesian information criteria (BIC) values 
(–2logL+2K [Akaike, 1973]; –2logL+Klogn [Schwarz, 
1978]). The K and n in the formula of AIC and BIC indicate 
the number of parameters and the number of records, 
respectively. The goal was to identify appropriate models 
through model selection using AIC or BIC by-production 
traits. 

 
RESULTS AND DISCUSSION 

 
Descriptive statistics on the test-day milk production 

traits are shown in Table 1. The average yields of MILK, 
FAT, PROT, and SNF were 29.65±6.47 kg, 1.12±0.30 kg, 
0.94±0.20 kg, and 2.59±0.56 kg, respectively. Kim et al. 
(2009) reported similar averages for Korean Holstein cattle: 
MILK (28.25 kg), FAT (1.07 kg), PROT (0.90 kg), and SNF 
(2.50 kg). Similar averages for MILK have also been 
reported by Lee et al. (2003) and Cho et al. (2005). We 
found relatively higher phenotypic averages in this study, 
which could be an effect of the increased use of elite 
breeding bulls and cows over the past few years.  

Table 2 represents the deviation between the estimated 

value (–2logL, AIC or BIC) of a given model and the 
lowest value for the respective parameters among the 
models. Most of the estimates decreased as the order of LP 
fit increased in the models of a particular residual type, 
except the BIC for FAT. The smallest –2logL and AIC 
estimates were observed in HET60 models (60 
heterogeneous residual classes) with fifth order polynomials 
(LP5) for all traits; this also showed the best fit among other 
models. Homogeneous residual models, on the other hand, 
were the least fit models for these above criteria. The best-
fit models based on the smallest BIC were slightly different 
than the best-fit models using –2logL and AIC. Also, the 
smallest BIC estimates on traits were obtained with HET15 
models only, even though their LP fits were different. 
Similarly, in a previous study, the lowest AIC and BIC were 
obtained from Brazilian Holsteins (Costa et al., 2008) for 
milk yield using a fifth order LP with 29 heterogeneous 

Table 1. Description of the test-day datasets and pedigree files 
after screening conditions used in this study 

Factors   

Test day records 126,980 

Mean milk yield (SD) 29.65(6.47)

Mean fat yield (SD) 1.12(0.30) 

Mean protein yield (SD) 0.94(0.20) 

Mean SNF yield (SD) 2.59(0.56) 

Number of HTDs 7,162 

Average number of records per HTD 17.73 

Number of YSs 30 

Average number of records per YS 4,232.7 

Number of cows with records 14,275 

Average number of records per cow 8.9 

Number of cows with test day records per sire 59.7 

Total animals in the pedigree 39,855 

Number of inbreeding animals 18,384 

Average inbreeding coefficient for inbred animals 0.019 

SD, standard deviation; SNF, solids-not-fat yield; HTD, herd-test day; YS, 
year-season of calving. 

Table 2. Number of variance components and deviations of Log likelihood, Akaike information content (AIC), and Bayesian 
information content (BIC) values for different models based on the lowest model estimates 

Model CR VP 
Milk yield Fat yield Protein yield SNF yield 

–2logL AIC BIC  –2logL AIC BIC –2logL AIC BIC  –2logL AIC BIC

L3_HOM 1 13 6,929.9 6,775.9 6,441.4 2,327.6 2,173.6 1,786.3 2,229.8 2,075.8 1,733.3 5,195.4 5,041.4 4,710.0

L3_HET15 15 27 4,006.8 3,880.8 3,682.0 667.8 541.8 290.2 1,189.4 1,063.4 856.6 3,028.2 2,902.2 2,706.6

L3_HET60 60 72 3,900.4 3,864.4 4,101.8 456.4 420.4 605.0 1,066.3 1,030.3 1,259.7 2,923.8 2,887.8 3,128.4

L4_HOM 1 21 2,367.0 2,229.0 1,972.0 1,104.4 966.4 656.7 892.2 754.2 489.2 1,779.9 1,641.9 1,388.1

L4_HET15 15 35 1,389.9 1,279.9 1,158.6 284.0 174.0 0.0 395.2 285.2 155.9 989.0 879.0 760.9

L4_HET60 60 80 1,276.0 1,256.0 1,570.9 106.9 86.9 349.1 271.8 251.8 558.8 877.6 857.6 1175.7

L5_HOM 1 31 598.1 480.1 320.1 687.3 569.3 356.5 426.7 308.7 140.7 539.0 421.0 264.2

L5_HET15 15 45 114.3 24.3 0.0 169.3 79.3 2.2 122.3 32.3 0.0 111.2 21.2 0.0 

L5_HET60 60 90 0.0 0.0 411.9 0.0 0.0 359.1 0.0 0.0 403.9 0.0 0.0 415.1

CR, number of classes for residual variance; VP, number of variance component parameters; SNF, solids-not-fat yield.  
1 The deviance of zero for –2logL, AIC, and BIC indicated the best fitted models. 
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classes. They also showed that heterogeneous models with 
increased polynomial orders (from third to fifth) obtained 
the best model estimate. This is in agreement with another 
previous study on Brazilian Holsteins (Bignardi et al., 
2009). Generally, the measures of AIC and BIC differ 
because of the penalty weights which are considered in their 
calculations. The AIC, as a penalty, considers a value twice 
the number of total model parameters (2K; see Materials 
and Methods), whereas the penalty for BIC includes a value 
of total model parameters multiplied by the natural 
logarithm of total records (Klogn; see Materials and 
Methods). Because the BIC accounts for both the number of 
model parameters and total records under study, it penalizes 
a model more rigorously than AIC and obtains a more 
parsimonious model (Cobuci et al., 2011; Dziak et al., 2012; 
Hurtado-Lugo et al., 2013). Therefore, we used BIC as the 

best fit model in this study. 
The trends of estimated variances for genetic, 

permanent environment and residual components for MILK, 
FAT, PROT, and SNF traits according to DIM are shown in 
Figure 1. In general, the genetic variances for MILK, FAT, 
PROT, and SNF yield showed gradual decrease initially (5 
to 30 DIM), followed by a somewhat steady variance up to 
the middle of lactation (30 to 185 DIM), and then showed a 
subtle increase (185 to 265 DIM) before a final descent 
until the end of lactation. Decreased genetic variances at the 
beginning and the end of the lactation curve have been 
reported for dairy cattle (López-Romero and Carabaño, 
2003; Cobuci et al., 2011). We observed the same trend at 
the two extremes of the lactation curve. Similar trends of 
permanent environmental variances for studied traits up to 
mid-lactation were observed, except for the gradual 

 

 

 

 

Figure 1. Estimation of genetic (first column), permanent environmental (second column), and residual variance (third column) for milk
(first row), fat (second row), protein (third row) and solids-not-fat (fourth row) according to test day by the fifth Legendre polynomial. 
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increases until the end of lactation and higher values during 
the extreme period of lactation compared to the mid-
lactation. These results are similar to those observed by 
Pool et al. (2000), Cobuci et al. (2011), Bignardi et al. 
(2011), and Kheirabadi et al. (2014) for MILK of Holstein. 
However, residual variances for heterogeneous models 
decreased gradually until the end of lactation, although they 
remained steady during the middle period. Studies by 
López-Romero et al. (2003) and Herrera et al. (2013) on 
milk production of Holstein cattle reported similar patterns 
for residual variances using models of 5 and 30 
heterogeneous classes fitting fourth and fifth order LPs, 
respectively. 

Figure 2 shows the changes in heritability estimates for 
milk production traits derived from the best-fit model 
variances. The heritabilities for traits varied as lactation 
progressed, where h2 estimates of MILK, PROT, and SNF 
started with a slight decrease followed by a gradual increase 
at 35 DIM until reaching the highest estimates at 259 DIM, 
but again ended with a steady decrease until 305 DIM. 
These results are in agreement with many previous reports 
(Liu et al., 2000b; Jakobsen et al., 2002; Bormann et al., 
2003; De Roos et al., 2004; Costa et al., 2008; Cobuci et al., 
2011) but not with Kheirabadi et al. (2014), which reported 
higher estimates at the beginning and the end of lactation. 
The heritability estimated for milk yield using the L5-
HET15 model ranged from 0.08 (27 DIM) to 0.15 (255 
DIM). Heritabilities in this study were significantly lower 
than those reported by other studies on Holstein (Olori et al., 
1999; Pool et al., 2000; Kim et al., 2009). This is because 
the genetic variances were relatively lower compared to the 
permanent environmental variances and residual variances. 
The FAT heritability estimates obtained using the L4-
HET15 model were also low, ranging from 0.06 to 0.14. 
Heritabilities for PROT ranged between 0.08 at 10 DIM and 
0.12 at 305 DIM. Although a higher FAT h2 was observed at 
the beginning of lactation, eventually it decreased to the 

lowest point at about 59 DIM and then remained somewhat 
steady after a slight increase until 305 DIM. However, 
heritability found in SNF yield in the present study ranged 
between 0.07 and 0.13 at 29 and 252 DIM, respectively. 
The results of h2 estimates for FAT, PROT, and SNF were 
lower than for MILK. Similar results have been reported by 
Jakobsen et al. (2002), Kim et al. (2009), and Kheirabadi et 
al. (2014). Heritabilities for milk production traits in our 
study were lower than previous estimates that used RRMs 
on Korean Holstein (Cho et al., 2005; Kim et al., 2009). 
However, similar results for MILK were observed by Lee et 
al. (2003). The plausible cause for these differences in h2 
among studies may be the use of different LP models and 
sample sizes subjected to data restriction in each study. 

The genetic correlation estimates (rG) between DIM for 
milk production traits are shown in Figure 3. These 
estimates ranged from almost no correlation to a complete 
correlation for MILK (–0.01 to 1.00), FAT (0.06 to 1.00), 
PROT (0.12 to 1.00), and SNF (–0. 04 to 1.00). Genetic 
correlations were stronger between adjacent DIM records 
and relatively weaker between distant DIM records. These 
results are in close agreement with genetic correlations that 
were reported previously for Holsteins using RRMs with 
test day records (Cobuci et al., 2011; Herrera et al., 2013; 
Kheirabadi et al., 2014). However, the genetic correlations 
for MILK mostly varied during the early lactation stage; for 
example, between 0.06 and 1.00 until 115 DIM. After 115 
DIM, the rG estimates were greater than 0.90 throughout 
lactation. These higher genetic correlations between 115 
and 305 DIM indicate that the estimated breeding values 
were similar along the later lactation stages. This raises the 
possibility for inclusion of cow (lacking complete records 
between 100 to 305 DIM) phenotypes in the model to 
obtain breeding values, especially when genetic evaluations 
using test day RRMs are performed. Likewise, high genetic 
correlations were obtained for other traits until the end of 
lactation, despite the fact that the length of the stage 

 

Figure 2. Estimation of heritability of the best fitted model for milk (L5_HET15), fat (L4_HET15), protein (L5_HET15), and solids-not-
fat yields (L5_HET15) according to days in milk (DIM). 



Cho et al. (2016) Asian Australas. J. Anim. Sci. 29:607-614 

 

612

differed slightly (FAT [151 to 305 DIM], PROT [140 to 305 
DIM], SNF [153 to 305 DIM]). 

 
CONCLUSION 

 
An RRMs analysis of longitudinal trait in dairy cattle to 

study genetic changes over time can increase understanding 
of the genetics of lactation. In this study, a variety of 
models were considered to find the goodness of models for 
milk production traits. The results of BIC among models 
showed that the L5-HET15 model fitted data best for MILK, 
PROT, and SNF, whereas the L4-HET15 model fitted data 
best for FAT. This suggests that the order of LP and type of 
residual variances affected the goodness of model. Also, the 
heterogeneity of residual variances should be considered on 
the test-day analysis as they varied during the lactation; 
especially, they declined as lactation progressed. 
Heritability estimates of the traits, even though were 
relatively small, showed similar patterns with previous 
reports, throughout the lactation period. Genetic 
correlations among various DIMs were concordant with 
previous reports. Higher genetic correlation estimates 

during the middle and end lactation stage also suggested the 
inclusion of cows for breeding value estimation that had 
missing records for those periods. This RRMs study has 
provided us a good insight into the changes in genetic merit 
of milk production traits in Korean Holstein cattle. 
Regarding the fitness of the models and differential genetic 
variance components across the lactation stages, parameter 
estimates of RRMs seemed to be more accurate and more 
informative than those of lactation models. Therefore, we 
suggest using RRMs in place of lactation models to make 
national dairy cattle genetic evaluations for milk production 
traits in Korea. 
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