• Title/Summary/Keyword: left ventricular assist system

Search Result 31, Processing Time 0.029 seconds

Simulation Study of Blood Perfusion according to Outflow Cannulation Site of Left Ventricular Assist Device (좌심실보조장치의 출구 캐뉼라의 삽관 위치에 따른 혈액관류에 대한 시뮬레이션 연구)

  • Jee, In Hyeog;Kim, Hyeong Gyun;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2015
  • Outflow cannulation site of left ventricular assist device(LVAD) chosen by considering anatomical structure of thoracic cavity and vascular system. Though outflow cannulation site influences blood perfusion at each branch, there is no standard rule or quantitative data. In this study, we computed the amount of blood perfusion at each arterial branch numerically according to outflow cannulation sites(ascending aorta, aortic arch, descending aorta). We generated computational meshes to the three-dimensionally reconstructed arterial system. Clinically measured arterial pressure were used for inlet boundary condition, porous media were applied to mimic blood flow resistance. Blood perfusion through left common carotid artery was 2.5 times higher than other cases, and that through right common carotid artery was 1.1 times higher than other branches. Although this is simulation study, will be useful reference data for the clinical study of LVAD which considers blood perfusion efficiency.

Non-Surgical Resolution of Inflow Cannula Obstruction of a Left Ventricular Assist Device: A Case Report

  • Lee, Yoonseo;Sung, Kiick;Kim, Wook Sung;Jeong, Dong Seop;Shinn, Sung Ho;Cho, Yang Hyun
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.543-546
    • /
    • 2021
  • A 55-year-old woman who had received an implantable left ventricular assist device 3 months earlier presented with dyspnea and a low-flow alarm of the device. Computed tomography and log-file analysis of the device system suggested inflow cannula obstruction. Since the patient had cardiogenic shock due to pump failure, venoarterial extracorporeal membrane oxygenation (ECMO) was initiated. With ECMO, surgical exchange of the pump was considered. However, the obstruction spontaneously resolved without surgical intervention. It turned out that an obstructive thrombus was washed out by rebooting the pump. Moreover, the thrombus was embolized in the patient's left subclavian artery. The patient underwent heart transplantation 4 months after the pump obstruction accident and continued to do well.

Application of Cardiac Electromechanical FE Model for Predicting Pumping Efficacy of LVAD According to Heart Failure Severity (심부전 정도에 따른 좌심실보조장치의 박동효율예측을 위한 심장의 전기역학적 유한요소 모델의 응용)

  • Jung, Dae Hyun;Lim, Ki Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.715-720
    • /
    • 2014
  • In order to maximize the effect of left ventricular assist device (LVAD) on ventricular unloading, the therapy should be begun at appropriate level of heart failure severity. We predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used 3 dimensional finite element model of ventricle coupled with 6 Wind-kessel compartmental model of vascular system. Using the computational model, we predicted cardiac responses such as contractile ATP consumption of ventricle, left ventricular pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous LVAD. Contractile ATP consumption, which indicates the ventricular energetic loading condition decreased maximally at the $5^{th}$ level heart-failure under LVAD therapy. We conclude that optimal timing for LVAD treatment is $5^{th}$ level heart-failure when considering LVAD treatment as "bridge to recovery".

Outcome of Extracorporeal Ventricular Assist Device for Cardiogenic Shock as a Bridge to Transplantation

  • Kim, Hyo-Hyun;Shin, Jung-Hoon;Kim, Jung-Hwan;Youn, Young-Nam
    • Journal of Chest Surgery
    • /
    • v.53 no.6
    • /
    • pp.368-374
    • /
    • 2020
  • Background: The extracorporeal ventricular assist device (e-VAD) system is designed for left ventricular support using a permanent life support console. This study aimed to determine the impact of temporary e-VAD implantation bridging on posttransplant outcomes. Methods: We reviewed the clinical records of 6 patients with the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profile 1, awaiting heart transplantation, who were provided with temporary e-VAD from 2018 to 2019. The circuit comprised a single centrifugal pump without an oxygenator. The e-VAD inflow cannula was inserted into the apex of the left ventricle, and the outflow cannula was positioned in the ascending aorta. The median follow-up duration was 8.4±6.9 months. Results: After e-VAD implantation, lactate dehydrogenase levels significantly decreased, and Sequential Organ Failure Assessment scores significantly improved. Bedside rehabilitation was possible in 5 patients. After a mean e-VAD support duration of 14.5±17.3 days, all patients were successfully bridged to transplantation. After transplantation, 5 patients survived for at least 6 months. Conclusion: e-VAD may reverse end-organ dysfunction and improve outcomes in INTERMACS I heart transplant patients.

In Vitro Test of Seiong Pediatric Ventricular Assist Device (소아용 보조인공심장의 모의순환 실험에 관한 연구)

  • 권혁남;박표원
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 1991
  • Ventricular assist device(VAD) has been clinically applied as a temporary circulatory sup- porting system in the patients with severe heart failure, but small sized VAD for infant is not available. The purpose of tilis paper is to introdIAce small sized VAD and presents the result of in vitro test. Sejong VAD is diaphragmatic type of pneumatic pump and stroke volume is 11cc. Cardiac outputs of the Sejong VAD were measured by overflow tank under variable conditions of driving parameters. The cardiac output was 1.3 1/min at the heart rate of 120 per minute, left atrial pressure of $15cmH_2O$, percent systole of 43%, driving pressure of 240 mmHg, vacuum pressure of -40 mmHg, and mean aortic pressure of 70 mmHg. No mechanical problem was developed during the continuous in vitro test for 3 months.

  • PDF

Evaluation of Pneumatic Left Ventricular Assist Device for Animal Experiment (동물실험을 통한 공압식 좌심실보조장치의 평가)

  • Lee, H.S.;Oh, H.J.;Lee, S.H.;Kim, S.H.;Seo, P.W.;Park, S.S.;Rhee, K.H.;Ahn, H.;Hwang, S.O.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.235-236
    • /
    • 1998
  • The purpose of this paper is to develop diaphragm type pneumatic Left Ventricular Assist Device(LVAD) for clinical application and to evaluate its performance through the mock circulation and animal experiment. The blood housing and diaphragm are made by polyurethane. The relations of cardiac output us. beat rate and cardiac output vs. systolic-to-diastolic rate was estimated through the mock test and hemodynamic waves are recorded for the evaluation of VAD. We performed animal experiment and 4 animals survived more than 24hrs. As a result, the hemodynamic data and waves showed this system can be applicable to the animal experiment.

  • PDF

인조신경망을 이용한 좌심실보조장치의 동적 모델링

  • 김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.346-350
    • /
    • 1996
  • This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.

  • PDF

A study on the development of motor-driven artificial heart and its control (인공심장의 자동제어)

  • 민병구;김희찬;권성일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.643-647
    • /
    • 1986
  • A new type of motor-driven Total Artificial Heart (TAH) system with rolling-ball mechanism has been developed. To test its performance as a Left Ventricular Assist Device (LVAD), LVAD is controlled to bypass blood for impaired heart triggered by the R-wave in ECG. Results of the test with a Mock Circulation System (MCS) and an animal experiment with a dog are also included. More powerful system using a brushless DC motor has been developed and its control scheme is represented.

  • PDF

Biocompatibility Evaluation of Bent-Type Left Ventricular Assist Device During Long-Term Animal Experiment and Emergent Situation (장기 동물 실험 및 응급상황에서의 곡관형 좌심실보조장치의 생체적합성 평가)

  • Kang, Seong Min;Her, Keun;Choi, Seong Wok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.739-745
    • /
    • 2014
  • Although medication is given to heart disease patients, conventional medication alone is not sufficient to treat heart disease. However, it has been reported that left ventricular assist device (LVAD) transplantation is an effective bridge to heart transplantation by assisting cardiac function. This study used long-term animal testing and emergency situations with a bovine model (Holstein) and canine model (Labrador-retriever) to evaluate the biocompatibility of LibraHeart-I (LH-1), which is a bent-tube type of LVAD that was developed in a previous study. In the long-term animal testing with the bovine model, the subjects survived for 49 days with no irregularities observed in their complete blood cell counts or the vital sign tests that were carried out during the test period. In short-term animal testing with the canine model, it was observed that blood did not remain inside the LH-I even without power support from an external drive source. In this study, the biocompatibility of the LH-I that was developed in a previous study was verified by the ejection performance during long-term animal testing and emergency situations.

Estimation of Physiological Variables for LVAS Control Using an Axial Flow Blood Pump Model (축류혈액펌프 모델을 이용한 좌심실보조장치 제어를 위한 생리학적 변수의 추정)

  • 최성진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1061-1065
    • /
    • 2002
  • Sensors need to be implanted to obtain necessary information for LVAS (Left Ventricular Assist System) operations. Size of the sensors can prevent them from being implanted in a patient and reliabilities of the sensors are questionable for a long term use. In this wort we utilize a developed pump model to estimate flow and pressure difference across the pump without implanted sensors and present a method to obtain the physiological variables as aorta pressure and left ventricle pressure from the pump model and pulsatility of flow estimate or pressure difference estimate. These estimated variables can be used for LVAS control as an index or indices.