Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2002.8.12.1061

Estimation of Physiological Variables for LVAS Control Using an Axial Flow Blood Pump Model  

최성진 (수원대학교 전기공학과)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.8, no.12, 2002 , pp. 1061-1065 More about this Journal
Abstract
Sensors need to be implanted to obtain necessary information for LVAS (Left Ventricular Assist System) operations. Size of the sensors can prevent them from being implanted in a patient and reliabilities of the sensors are questionable for a long term use. In this wort we utilize a developed pump model to estimate flow and pressure difference across the pump without implanted sensors and present a method to obtain the physiological variables as aorta pressure and left ventricle pressure from the pump model and pulsatility of flow estimate or pressure difference estimate. These estimated variables can be used for LVAS control as an index or indices.
Keywords
axial flow blood pump; LVAS control; physiological variables; pulsatility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Schima, W. Trubel, A. Moritz, G. Wieselthaler, H. G. Stohr, H. Thomas, U. Losert, and E. Wolner, 'Noninvasive monitoring of rotary blood pumps: nceessity, possibilities, and limitations', Artificial Organs, Vol. 16, No. 2, pp. 195-202, 1992   DOI   ScienceOn
2 G. K. Klute, U. Tasch, and D. B. Geselowitz, 'An optimal controller for an electric Ventricular-assist device: Theory, Implementation, and Testing', IEEE Transactions on Biomedical Engineering, Vol. 39, No. 4, pp. 394-403, 1990   DOI   ScienceOn
3 S. Choi, J. R. Boston, D. Thomas, and J. F. Antaki, 'Modeling and identification of an axial flow blood pump', Proc America Control Conference, pp. 3714-3715, Albuquerque, NM, June 4-6, 1997   DOI
4 J. R. Boston, M. A. Simaan, J. F. Antaki, Y-C Yu, S. Choi, 'Intelligent control design for heart assist devices', Proc 1998 ISIC/CIRA/ISAS Joint Conference, pp. 497-502, Gaithersburg, MD, September 14-17, 1998   DOI
5 F. M. Donovan, 'Design of a hydraulic analog of the circulatory system for evaluating artificial hearts', Biomat., Med. Dev., Art. Org., Vol. 3, No. 4, pp. 439-449, 1975
6 U. Tasche, J. W. Koontz, M. A. Ignatoski, and D. B. Geselowitz, 'An adaptive aortic observer for the penn state electric ventricular assist device', IEEE Transactions on Biomedical Engineering, Vol. 37, No. 4, pp. 374-383, 1990   DOI   ScienceOn
7 S. Choi, J. F. Antaki, J. R. Boston, and D. Thomas, 'A sensorless approach to control of a turbodynamic left ventricular assist system', IEEE Transactions on Control Systems Technology, Vol. 1, No. 4, pp. 270-279, 1993   DOI   ScienceOn
8 A. J. Blauch, M. Bodson, and J. Chiasson, 'High speed parameter estimation of stepper motor', IEEE Transactions on Control Systems Technology, Vol. 1, No. 4, pp. 270-279, 1993   DOI
9 A. P. Lioi, J. L. Orth, K. R. Crump, G. Diffee, P. A. Dew, S. D. Nielsen, and D. B. Olsen, 'In vitro development of automatic control for the activley Filled Electrohydraulic Heart', Artificial Organs, Vol. 12, No. 2, pp. 152-162, 1988   DOI   ScienceOn
10 J. R. Boston, L. Baloa, Dehou Liu, M. A. Simaan, S. Choi, and J. F. Antaki, 'Combination of data approaches to heuristic control and fault detection', IEEE Conference on Control Applications and International Symposium on Computer-Aided Control Systems Design, pp. 98-103, Anchorage, AK, September 25-27, 2000   DOI
11 S. Choi, Modeling and Control of Left Ventricular Assist System, Ph.D. Thesis, University of Pittsburgh, 1998