DOI QR코드

DOI QR Code

Application of Cardiac Electromechanical FE Model for Predicting Pumping Efficacy of LVAD According to Heart Failure Severity

심부전 정도에 따른 좌심실보조장치의 박동효율예측을 위한 심장의 전기역학적 유한요소 모델의 응용

  • Jung, Dae Hyun (Dept. of Mechatronics Engineering, Kumoh Nat'l Univ.) ;
  • Lim, Ki Moo (Dept. of Medical IT Convergence Engineering, Kumoh Nat'l Univ.)
  • 정대현 (금오공과대학교 기전공학과) ;
  • 임기무 (금오공과대학교 메디컬 IT 융합공학과)
  • Received : 2014.03.30
  • Accepted : 2014.06.12
  • Published : 2014.08.01

Abstract

In order to maximize the effect of left ventricular assist device (LVAD) on ventricular unloading, the therapy should be begun at appropriate level of heart failure severity. We predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used 3 dimensional finite element model of ventricle coupled with 6 Wind-kessel compartmental model of vascular system. Using the computational model, we predicted cardiac responses such as contractile ATP consumption of ventricle, left ventricular pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous LVAD. Contractile ATP consumption, which indicates the ventricular energetic loading condition decreased maximally at the $5^{th}$ level heart-failure under LVAD therapy. We conclude that optimal timing for LVAD treatment is $5^{th}$ level heart-failure when considering LVAD treatment as "bridge to recovery".

좌심실보조장치(LVAD)가 심실부하감소에 미치는 영향을 극대화 하기 위해, 심실보조장치 치료를 위한 최적의 심부전 심각도 단계를 찾는 것은 중요하다. 우리는 심부전 정도에 따른 LVAD 의 박동효율을 이론적으로 예측하였다. 우리는 혈관시스템의 6 컴파트먼트의 Wind-kessel 모델과 연동된 심실의 삼차원 유한요소모델을 사용하였다. 이 모델을 이용하여, LVAD 치료 하에서 심부전의 정도에 따라 심실의 수축성 ATP 소모율, 좌심실압력, 심박출량, 심박출 분획, 1 회심박출량 등과 같은 심장응답을 예측하였다. LVAD 치료 중에 에너지학적 부하조건을 암시하는 수축성 ATP 소모율은 5 단계 심부전 조건에서 가장 크게 감소하였다. 따라서, 우리는 LVAD 를 회복으로의 가교로서 고려하고 있을 때, 심부전 5 단계에서 LVAD 치료를 시작하는 것이 가장 적절하다는 결론을 내린다.

Keywords

References

  1. Casarotto, D., Bottio, T., Gambino, A., Testolin, L., and Gerosa, G., 2003, "The Last to Die is Hope: Prolonged Mechanical Circulatory Support with a Novacor Left Ventricular Assist Device as a Bridge to Transplantation," J Thorac Cardiovasc Surg, Vol. 125, No. 2, pp. 417-418. https://doi.org/10.1067/mtc.2003.131
  2. Goldstein, D.J., 2003, "Worldwide experience with the MicroMed DeBakey Ventricular Assist Device as a Bridge to Transplantation," Circulation, Vol. 108 Suppl 1, No. pp. II272-277.
  3. Schweiger M., Vierecke, J., Potapov, E. and Krabatsch, T., 2013, "Management of Complications in Long-Term LVAD Support," Int J Artif Organs, Vol. 36, No. 6, pp. 444-446.
  4. Lim K.M., Kim, I.S., Choi, S.W., Min, B.G., Won, Y.S., Kim, H.Y. and Shim, E.B., 2009, "Computational Analysis of the Effect of the Type of LVAD Flow on Coronary Perfusion and Ventricular Afterload," J Physiol Sci, Vol. 59, No. 4, pp. 307-316. https://doi.org/10.1007/s12576-009-0037-7
  5. Lim, K.M., Lee, J.S., Song, J.H., Youn, C.H., Choi, J.S. and Shim, E.B., 2011, "Theoretical Estimation of Cannulation Methods for Left Ventricular Assist Device Support as a Bridge to Recovery," J Korean Med Sci, Vol. 26, No. 12, pp. 1591-1598. https://doi.org/10.3346/jkms.2011.26.12.1591
  6. Ten Tusscher, K., Noble, D., Noble, P. and Panfilov, A., 2004, "A Model for Human Ventricular Tissue," Am J Physiol Heart Circ Physiol, Vol. 286, No. 4, pp. H1573-1589. https://doi.org/10.1152/ajpheart.00794.2003
  7. Fox, J.J., McHarg, J.L. and Gilmour, R.F., Jr., 2002, "Ionic Mechanism of Electrical Alternans," Am J Physiol Heart Circ Physiol, Vol. 282, No. 2, pp. H516-530. https://doi.org/10.1152/ajpheart.00612.2001
  8. Rice, J.J., Wang, F., Bers, D.M. and de Tombe, P.P., 2008, "Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations," Biophys J, Vol. 95, No. 5, pp. 2368-2390. https://doi.org/10.1529/biophysj.107.119487
  9. Helm, R.H., Byrne, M., Helm, P.A., Daya, S.K., Osman, N.F., Tunin, R., Halperin, H.R., Berger, R.D., Kass, D.A. and Lardo, A.C., 2007, "Three-Dimensional Mapping of Optimal Left Ventricular Pacing Site for Cardiac Resynchronization," Circulation, Vol. 115, No. 8, pp. 953-961. https://doi.org/10.1161/CIRCULATIONAHA.106.643718
  10. Wu, Y., Bell, S.P., Trombitas, K., Witt, C.C., Labeit, S., LeWinter, M.M. and Granzier, H., 2002, "Changes in Titin Isoform Expression in Pacing-Induced Cardiac Failure Give Rise to Increased Passive Muscle Stiffness," Circulation, Vol. 106, No. 11, pp. 1384-1389. https://doi.org/10.1161/01.CIR.0000029804.61510.02
  11. O'Rourke, B., Kass, D.A., Tomaselli, G.F., Kaab, S., Tunin, R., and Marban, E., 1999, "Mechanisms of Altered Excitation-Contraction Coupling in Canine Tachycardia-Induced Heart Failure, I Experimental Studies," Circulation, Vol.84, No. 5, pp. 562-570. https://doi.org/10.1161/01.RES.84.5.562
  12. Lim, K.M., Constantino, J., Gurev, V., Zhu, R., Shim, E.B., and Trayanova, N.A., 2012, "Comparison of the Effects of Continuous and Pulsatile Left Ventricular-Assist Devices on Ventricular Unloading Using a Cardiac Electromechanics Model," J Physiol Sci, Vol. 62, No. 1, pp. 11-19. https://doi.org/10.1007/s12576-011-0180-9