• 제목/요약/키워드: layered double hydroxide

검색결과 67건 처리시간 0.021초

Pillar Host Material로써 Layered(Mg/Al) Double Hydroxide의 물리화학적 특성화 (Physico-Chemical Characterization of the Layered Double Hydroxide as Pillar Host Material)

  • 형경우;이용석
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.443-450
    • /
    • 1998
  • Layered double hydroxides(LDHs) [{{{{ {Mg }_{1-x } }}{{{{ {Al }_{x } }}({{{{ {OH}_{2 } }})]ζ+({{{{ {CO }`_{3 } ^{2- } ){ }_{x/2 } }}$.${{{{ { yH}_{2 }O }} wioth variation of layer charge densitywere synthesized by co-precipitation methdo since their charge densities have a very important role to be det-ermined the physicochemical properties of layered materials. The XRD IR and thermal studies of them were discussed and the kinetic study for the decarbonation reaction was also carried out. From the results of XRD analysis we found that the lattice parameter and the unit cell volume were linearly decreased with the amount of Al substituents(x) in the vicinity of x=2∼10${\times}$1/3${\times}$10-1 but they had nearly constant values when the x are far from these vicinit. The activation energies for the decarbonation reaction of x=6.8, 10${\times}$1/3${\times}${{{{ { 10}^{-1 } }} were estimated to be 47.0, 37.6, 39.3 kcal/mol The specific surface areas(90-120 m2/g) of stable hy-drotalcite-type LDHs were dractically decreased with increasing of layer charge density.

  • PDF

Preferential Intercalation of Organic Anions into Layered Double Hydroxide

  • 국원권;허영국
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1032-1036
    • /
    • 1998
  • Intercalation compounds of organic anions into layered double hydroxides (LDH) are synthesized by the coprecipitation route. X-ray diffraction data reveal that the intercalated terephthalate (TP), naphthalene-2,6-disulfonate (NA26), and anthraquinone-2,6-disulfonate (AQ26) are arranged with their molecular planes perpendicular to the hydroxide layer. HPLC data show that 26.2% of TP and 73.8% of AQ26 are cointercalated, whereas NA26 is not intercalated into the Zn/Al-LDH. These results indicate the possibility of a molecular recognition ability of Zn/Al-LDH. The molecular recognition ability of intercalation into Zn/Al-LDH is in the order AQ26 > TP >> NA26.

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju;Tadanaga, Kiyoharu;Hayashi, Akitoshi;Tatsumisago, Masahiro
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.230-236
    • /
    • 2021
  • Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

소성된 Mg-Al Layered Double Hydroxide에 의한 비소(V)의 흡착 (Sorption of Arsenate by the Calcined Mg-Al Layered Double Hydroxide)

  • 서영진;강윤주;최정;김준형;박만
    • 한국토양비료학회지
    • /
    • 제41권6호
    • /
    • pp.369-373
    • /
    • 2008
  • Mg-Al LDH를 이용하여 수용액중 비소와의 반응특성을 규명하고 비소 제거제로서 활용가능성을 규명하기 위하여 비소의 흡착특성, 제거효율 및 제거기작에 대한 조사를 하였다. Mg-Al LDH는 소성(calcination)에 의한 탈수로 Mg oxide 형태를 나타내었고 비소를 흡착시킨 결과 반응 22시간 이후에 흡착평형에 도달하였으며 흡착량은 약 530 mmol/kg정도였다. 반응농도별 LDH의 등온흡착은 L-type의 흡착반응을 나타내었다. 소성된 Mg-Al LDH는 용액중에서 재수화(rehydration) 될 때 비소가 LDH의 구조의 복구과정(reconstruction)에서 이온교환 반응에 의해 층간삽입이 일어나는 것으로 나타났다. LDH에 대한 arsenate와 phosphate, arsenate와 sulfate의 경쟁흡착 결과 arsenate와 phosphate의 선택성은 비슷한 편이었고, arsenate는 sulfate에 비해 선택성이 우수하였다. 따라서 calcined Mg-Al LDH는 비교적 높은 비소 제거효율을 나타내므로 비소 제거제로서 사용 가능성이 매우 높은 것으로 판단된다.

층상이중 수산화물을 이용한 5가 비소 흡착 특성 (Adsorption of Arsenate on the Synthesized Layered Double Hydroxide Materials)

  • 최영무;최원호;김정환;박주양
    • 대한토목학회논문집
    • /
    • 제29권1B호
    • /
    • pp.91-96
    • /
    • 2009
  • LDH(Layered double hydroxide) 물질을 제조하고 이를 이용하여 비소를 흡착시키는 실험을 수행하였다. TEM을 이용하여 제조한 LDH 물질의 형상을 살펴본 결과 열처리를 거친 시료는 나노크기의 결정화된 구조를 가지고 있고 열처리를 거치지 않은 시료는 아직 결정화가 완전히 이루어지지 않았으며 크기도 마이크로 범위에서 나타났다. X선 회절분석 결과를 보면 이 같은 결과가 뚜렷이 나타났으며, 열처리를 거친 경우는 뚜렷한 결정화를 보이고 있었다. $N_2$ 흡착 및 탈착 결과를 통해 LDH가 mesoporous한 공극 형태를 가지고 있다는 것을 알 수 있었다. 비표면적은 열처리를 거친 시료가 열처리를 거치지 않은 시료보다 2배 이상 크게 나타났다. 흡착 등온 실험 결과에서도 두 시료는 비슷한 흡착량을 보이며 기존 철산화 물에 못지않은 흡착능을 나타내고 있다. 금번에 합성한 Mg Fe-LDH 물질을 이용하여 토양 및 지하수의 비소 제거 공정에 적용할 수 있음을 확인하였다.

Catalytic deoxygenation of vanillin over layered double hydroxide supported Pd catalyst

  • Liao, Chanjuan;Liu, Xixi;Ren, Yongshen;Gong, Daoxin;Zhang, Zehui
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.380-386
    • /
    • 2018
  • A sustainable method was developed for the upgrade of biomass derived vanillin (a typical model compound of lignin) into the potential liquid biofuels over a layered double hydroxide supported Pd catalyst (abbreviated as CoAl-LDH/Pd). The CoAl-LDH/Pd catalyst showed high catalytic activity towards the hydrodeoxygenation of vanillin into 2-methoxy-4-methylphenol (MMP) under mild conditions in aqueous media. High MMP yield up to 86% was produced at $120^{\circ}C$ after 4 h. Kinetic studies revealed that the rate-determining step for the hydrodeoxygenation of vanillin was the hydrogenolysis of vanillyl alcohol. More importantly, the CoAl-LDH/Pd catalyst was highly stable without the loss of activity.

Electrodeposition of Graphene-Zn/Al Layered Double Hydroxide (LDH) Composite for Selective Determination of Hydroquinone

  • Kwon, Yeonji;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1755-1762
    • /
    • 2013
  • A graphene-Zn/Al layered double hydroxide composite film was simultaneously prepared by electrochemical deposition on the surface of a glassy carbon electrode (G-LDH/GCE) from the mixture solution containing GO and nitrate salts of $Zn^{2+}$ and $Al^{3+}$. The modified electrode showed good electrochemical performances toward the simultaneous electrochemical detection of hydroquinone (HQ), catechol (CA) and resorcinol (RE) due to the unique properties of graphene (G) and LDH such as large active surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of G-LDH/GCE were investigated with cyclic voltammetry and differential pulse voltammetry. The well-separated oxidation peak potentials, corresponding to the oxidation of HQ, CA and RE, were observed at 0.126 V, 0.228 V and 0.620 V respectively. The amperometric response of the modified electrode exhibited that HQ can be detected without interference of CA and RE. Under the optimized conditions, the oxidation peak current of HQ is linear with the concentration of HQ from 6.0 ${\mu}M$ to 325.0 ${\mu}M$ with the detection limit of 0.077 ${\mu}M$ (S/N=3). The modified electrode was successfully applied to the direct determination of HQ in a local tap water, showing reliable recovery data.

Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles

  • Kim, Kyoung-Min;Park, Chung-Berm;Choi, Ae-Jin;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2217-2221
    • /
    • 2011
  • We investigated the selective deoxyribonucleic acid (DNA) adsorption on layered double hydroxide (LDH) nanoparticles via studying the interaction between positively charged LDH nanoparticle as adsorbent and negatively charged adsorbates such as methyl orange (MO), fluorescein (FL), and DNA strands. The size controlled LDH $(Mg_{0.78}Al_{0.22}(OH)_2(CO_3)_{0.11}{\cdot}mH_2O)$ was prepared by conventional coprecipitation method, followed by the hydrothermal treatment. According to the adsorption isotherms, the adsorbed amounts of MO and FL were similar, however, that of DNA were much larger. The adsorption behaviors were well fitted to Freundlich adsorption model. The concentration dependent adsorption behavior on LDH surface was described in order to verify the selective DNA separation ability. The result showed that the LDH has advantages in selective adsorption of DNA competing with single molecular anions.

Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties

  • Li, Shifeng;Shen, Yanming;Liu, Dongbin;Fan, Lihui;Wu, Keke
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.392-396
    • /
    • 2014
  • New organic-inorganic composite of 2,4-dihydroxybenzophenone (BP-1) encapsulation into dodecylbenzenesulfonate (DBS) modified layered double hydroxide (LDH) was successfully prepared. The surface, structural, thermal and absorption properties of the BP-1/DBS-LDH nanohybrid was characterized by BET analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG) and diffuse reflectance UV-Vis absorbance spectra (DRUV-vis). The interlayer configuration of composite and the adsorption mechanism of BP-1 on MgAl-DBS-LDH were discussed. It was suspected that DBS anions located in the form of monolayer arrangement with a $75^{\circ}$ anti parallel angle between dodecylbenzenesulfonate chain axis. The diffuse reflectance UV-Vis absorbance results revealed that the UV absorbing wavelength of BP-1/DBS-LDH evidently extends to about 400 nm, which shows that the BP-1/DBS-LDH has the potential application as a UV absorber.

층상 이중 수산화물 나노물질의 성장 제어기술 연구동향 (Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures)

  • 전찬우;박일규
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.514-522
    • /
    • 2018
  • Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.