Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.6.514

Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures  

Jeon, Chan-Woo (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.25, no.6, 2018 , pp. 514-522 More about this Journal
Abstract
Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.
Keywords
Layered Double Hydroxide; Growth mechanism; Hydrothermal growth; Solution method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Mohapatra and K. Parida: J. Mater. Chem. A, 4 (2016) 10744.   DOI
2 K. Yan, Y. Liu, Y. Lu, J. Chai and L. Sun: Catal. Sci. Technol., 7 (2017) 1622.   DOI
3 Q. Wang and D. O'Hare: Chem. Rev., 112 (2012) 4124.   DOI
4 S. M. Xu, T. Pan, Y. B. Dou, H. Yan, S. T. Zhang, F. Y. Ning, W. Y. Shi and M. Wei: J. Phys. Chem. C, 119 (2015) 18823.   DOI
5 D. K. Cho and I. K. Park: Ceram. Int., 44 (2018) 8556.   DOI
6 J. Yu, Q. Wang, D. O'Hare and L. Sun: Chem. Soc. Rev., 46 (2017) 5950.   DOI
7 Z. Meng, Y. Zhang, Q. Zhang, X. Chen, L. Liu, S. Komarneni and F. Lv: Appl. Surf. Sci., 396 (2017) 799.   DOI
8 N. Baig and M. Sajid: Trends Environ. Anal. Chem., 16 (2017) 1.   DOI
9 Y. Sun, J. Zhou,W. Cai, R. Zhao and J. Yuan: Appl. Surf. Sci., 349 (2015) 897.   DOI
10 D. K. Cho, C. W. Jeon and I. K. Park: J. Alloys Compd., 737 (2018) 725.   DOI
11 Z. P. Xu, G. S. Stevenson, C. Q. Lu, G. Q.(Max) Lu, P. F. Bartlett and P. P. Gray: J. Am. Chem. Soc., 128 (2006) 36   DOI
12 W. Liu, J. Bao, M. Guan, Y. Zhao, J. Lian, J. Qiu, L. Xu, Y. Huang, J. Qian and H. Li: Dalton Trans., 46 (2017) 8372.   DOI
13 B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao and L. Liu: J. Power Sources, 246 (2014) 747.   DOI
14 F. Zhang, L. Guo, S. Xu, and R. Zhang: Langmuir, 31 (2015) 6704.   DOI
15 S. H. Baek, G. H. Nam and I. K. Park: RSC Adv., 5 (2015) 59823.   DOI
16 S. H. Baek and I. K Park: J. Ceram. Process. Res., 18 (2017) 584.
17 D. K. Cho, S. S. Lee, J. S. Lim, S. H. Baek and I. K. Park: Ceram. Int., 43 (2017) 9686.   DOI