DOI QR코드

DOI QR Code

Catalytic deoxygenation of vanillin over layered double hydroxide supported Pd catalyst

  • Liao, Chanjuan (College of Resources and Environment, Hunan Agricultural University) ;
  • Liu, Xixi (Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities) ;
  • Ren, Yongshen (Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities) ;
  • Gong, Daoxin (College of Resources and Environment, Hunan Agricultural University) ;
  • Zhang, Zehui (Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities)
  • Received : 2018.05.02
  • Accepted : 2018.08.21
  • Published : 2018.12.25

Abstract

A sustainable method was developed for the upgrade of biomass derived vanillin (a typical model compound of lignin) into the potential liquid biofuels over a layered double hydroxide supported Pd catalyst (abbreviated as CoAl-LDH/Pd). The CoAl-LDH/Pd catalyst showed high catalytic activity towards the hydrodeoxygenation of vanillin into 2-methoxy-4-methylphenol (MMP) under mild conditions in aqueous media. High MMP yield up to 86% was produced at $120^{\circ}C$ after 4 h. Kinetic studies revealed that the rate-determining step for the hydrodeoxygenation of vanillin was the hydrogenolysis of vanillyl alcohol. More importantly, the CoAl-LDH/Pd catalyst was highly stable without the loss of activity.

Keywords

Acknowledgement

Supported by : Central University for Nationalities

References

  1. R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
  2. C. Parmeggiani, C. Matassini, F. Cardona, Green Chem. 19 (2017) 2030. https://doi.org/10.1039/C7GC00406K
  3. J.M. Thomas, B.F.G. Johnson, R. Raja, G. Sankar, P.A. Midgley, Acc. Chem. Res. 36 (2003) 20. https://doi.org/10.1021/ar990017q
  4. Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, J. Am. Chem. Soc. 133 (2011) 2362. https://doi.org/10.1021/ja109856y
  5. R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38 (2009) 481. https://doi.org/10.1039/B802654H
  6. M. Kondeboina, S.S. Enumula, V.R.B. Gurram, R.R. Chada, D.R. Burri, S.R.R. Kamaraju, J. Ind. Eng. Chem. 61 (2018) 227. https://doi.org/10.1016/j.jiec.2017.12.020
  7. H. Mahmood, M. Moniruzzaman, S. Yusup, T. Welton, Green Chem. 19 (2017) 2051. https://doi.org/10.1039/C7GC00318H
  8. H.M. Morgan, Q. Bu, J.H. Liang, Y.J. Liu, H.P. Mao, A.P. Shi, H.W. Lei, R. Ruan, Bioresour. Technol. 230 (2017) 112. https://doi.org/10.1016/j.biortech.2017.01.059
  9. M.Z. Xu, C. Mukarakate, K. Iisa, S. Budhi, M. Menart, M. Davidson, D.J. Robichaud, M.R. Nimlos, B.G. Trewyn, R.M. Richards, ACS Sustain. Chem. Eng. 5 (2017) 5477. https://doi.org/10.1021/acssuschemeng.7b00817
  10. X. Xu, Y. Li, Y. Gong, P.F. Zhang, H.R. Li, Y. Wang, J. Am. Chem. Soc. 134 (2012) 16987. https://doi.org/10.1021/ja308139s
  11. R. Singuru, K. Dhanalaxmi, S.C. Shit, B.M. Reddy, J. Mondal, ChemCatChem 9 (2017) 2550. https://doi.org/10.1002/cctc.201700186
  12. Z.B. Zhu, H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Green Chem. 16 (2014) 2636. https://doi.org/10.1039/C3GC42647E
  13. J. Kayalvizhi, A. Pandurangan, Mol. Catal. 436 (2017) 67. https://doi.org/10.1016/j.mcat.2017.04.002
  14. R.F. Nie, X.L. Peng, H.F. Zhang, X.L. Yu, X.H. Lu, D. Zhou, Q.H. Xia, Catal. Sci. Technol. 7 (2017) 627. https://doi.org/10.1039/C6CY02461K
  15. A.A. Ibrahim, A. Lin, F.M. Zhang, K.M. AbouZeid, M.S. El-Shall, ChemCatChem 9 (2017) 469. https://doi.org/10.1002/cctc.201600956
  16. F.M. Zhang, S. Zheng, Q. Xiao, Y.J. Zhong, W.D. Zhu, A. Lin, M.S. El-Shall, Green Chem. 18 (2016) 2900. https://doi.org/10.1039/C5GC02615F
  17. S. Verma, R.B.N. Baig, M.N. Nadagouda, R.S. Varma, Green Chem. 18 (2016) 1327. https://doi.org/10.1039/C5GC02951A
  18. Z.F. Lv, Q. Sun, X.J. Meng, F.S. Xiao, J. Mater. Chem. A 1 (2013) 8630. https://doi.org/10.1039/c3ta10916j
  19. F.M. Zhang, Y. Jin, Y.H. Fu, Y.J. Zhong, W.D. Zhu, A.A. Ibrahim, J. Mater. Chem. A 3 (2015) 17008. https://doi.org/10.1039/C5TA03524D
  20. R.F. Nie, H.H. Yang, H.F. Zhang, X.L. Yu, X.H. Lu, D. Zhou, Q.H. Xia, Green Chem. 19 (2017) 3126. https://doi.org/10.1039/C7GC00531H
  21. L. Petitjean, R. Gagne, E.S. Beach, D.Q. Xiao, P.T. Anastas, Green Chem. 18 (2016) 150. https://doi.org/10.1039/C5GC01464F
  22. C. Andronescu, S. Barwe, E. Ventosa, J. Masa, E. Vasile, B. Konkena, S. Moller, W. Schuhmann, Angew. Chem. Int. Ed. 56 (2017) 11258. https://doi.org/10.1002/anie.201705385
  23. T. Ye, W.M. Huang, L.M. Zeng, M.L. Li, J.L. Shi, Appl. Catal. B 210 (2017) 141. https://doi.org/10.1016/j.apcatb.2017.03.051
  24. B. Zhang, Z.H. Dong, D.J. Sun, T. Wu, Y.J. Li, J. Ind. Eng. Chem. 49 (2017) 208. https://doi.org/10.1016/j.jiec.2017.01.029
  25. L. Lu, J. Li, D.H.L. Ng, P. Yang, P. Song, M. Zuo, J. Ind. Eng. Chem. 46 (2017) 315. https://doi.org/10.1016/j.jiec.2016.10.045
  26. M. Li, M. Wei, D.G. Evans, Catal. Today 247 (2017) 163.
  27. P. Benito, M. Herrero, C. Barriga, F.M. Labajos, V. Rives, Inorg. Chem. 47 (2008) 5453. https://doi.org/10.1021/ic7023023
  28. M. Adachi-Pagano, C. Forano, J.-P. Besse, J. Mater. Chem. 13 (2003) 1988. https://doi.org/10.1039/B302747N
  29. P. Li, P.P. Huang, F.-F. Wei, Y.-B. Sun, C.-Y. Cao, W.-G. Song, J. Mater. Chem. A 2 (2014) 12739. https://doi.org/10.1039/C4TA01811G
  30. I. Carpani, M. Berrettoni, M. Giorgetti, D. Tonelli, J. Phys. Chem. B 110 (2006) 7265. https://doi.org/10.1021/jp0574910
  31. R. Ma, J.B. Liang, K. Takada, T. Sasaki, J. Am. Chem. Soc. 133 (2010).
  32. R.H. Ouyang, D.E. Jiang, ACS Catal. 5 (2015) 6624. https://doi.org/10.1021/acscatal.5b01521
  33. J.Z. Chen, R.L. Liu, Y.Y. Guo, L.M. Chen, H. Gao, ACS Catal. 5 (2015) 722. https://doi.org/10.1021/cs5012926
  34. E. Furimsky, F.E. Massoth, Catal. Today 52 (1999) 381. https://doi.org/10.1016/S0920-5861(99)00096-6
  35. A.B. Bindwal, P.D. Vaidya, Energy Fuels 28 (2014) 3357. https://doi.org/10.1021/ef500498z

Cited by

  1. Synergy Effects between Oxygen Groups and Defects in Hydrodeoxygenation of Biomass over a Carbon Nanosphere Supported Pd Catalyst vol.8, pp.42, 2020, https://doi.org/10.1021/acssuschemeng.0c06122
  2. Enhancing Activity of Ni2P-Based Catalysts by a Yolk-Shell Structure and Transition Metal-Doping for Catalytic Transfer Hydrogenation of Vanillin vol.35, pp.5, 2018, https://doi.org/10.1021/acs.energyfuels.0c03771
  3. Renewable Tar-Derived Pd@biocarbon for Mild and Efficient Selectively Hydrodeoxygenation of Vanillin vol.35, pp.5, 2018, https://doi.org/10.1021/acs.energyfuels.0c04098
  4. Highly Dispersed Pd on Zeolite/Carbon Nanocomposites for Selective Hydrodeoxygenation of Biomass-Derived Molecules under Mild Conditions vol.9, pp.29, 2018, https://doi.org/10.1021/acssuschemeng.1c02876
  5. Cobalt nanoparticle supported on layered double hydroxide: Effect of nanoparticle size on catalytic hydrogen production by NaBH4 hydrolysis vol.290, pp.None, 2018, https://doi.org/10.1016/j.envpol.2021.117990