Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.08.012

Catalytic deoxygenation of vanillin over layered double hydroxide supported Pd catalyst  

Liao, Chanjuan (College of Resources and Environment, Hunan Agricultural University)
Liu, Xixi (Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities)
Ren, Yongshen (Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities)
Gong, Daoxin (College of Resources and Environment, Hunan Agricultural University)
Zhang, Zehui (Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 380-386 More about this Journal
Abstract
A sustainable method was developed for the upgrade of biomass derived vanillin (a typical model compound of lignin) into the potential liquid biofuels over a layered double hydroxide supported Pd catalyst (abbreviated as CoAl-LDH/Pd). The CoAl-LDH/Pd catalyst showed high catalytic activity towards the hydrodeoxygenation of vanillin into 2-methoxy-4-methylphenol (MMP) under mild conditions in aqueous media. High MMP yield up to 86% was produced at $120^{\circ}C$ after 4 h. Kinetic studies revealed that the rate-determining step for the hydrodeoxygenation of vanillin was the hydrogenolysis of vanillyl alcohol. More importantly, the CoAl-LDH/Pd catalyst was highly stable without the loss of activity.
Keywords
Deoxygenation; Vanillin; Pd catalysts; Layered double hydroxides; Mild conditions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
2 C. Parmeggiani, C. Matassini, F. Cardona, Green Chem. 19 (2017) 2030.   DOI
3 J.M. Thomas, B.F.G. Johnson, R. Raja, G. Sankar, P.A. Midgley, Acc. Chem. Res. 36 (2003) 20.   DOI
4 Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, J. Am. Chem. Soc. 133 (2011) 2362.   DOI
5 R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38 (2009) 481.   DOI
6 M. Kondeboina, S.S. Enumula, V.R.B. Gurram, R.R. Chada, D.R. Burri, S.R.R. Kamaraju, J. Ind. Eng. Chem. 61 (2018) 227.   DOI
7 H. Mahmood, M. Moniruzzaman, S. Yusup, T. Welton, Green Chem. 19 (2017) 2051.   DOI
8 H.M. Morgan, Q. Bu, J.H. Liang, Y.J. Liu, H.P. Mao, A.P. Shi, H.W. Lei, R. Ruan, Bioresour. Technol. 230 (2017) 112.   DOI
9 M.Z. Xu, C. Mukarakate, K. Iisa, S. Budhi, M. Menart, M. Davidson, D.J. Robichaud, M.R. Nimlos, B.G. Trewyn, R.M. Richards, ACS Sustain. Chem. Eng. 5 (2017) 5477.   DOI
10 X. Xu, Y. Li, Y. Gong, P.F. Zhang, H.R. Li, Y. Wang, J. Am. Chem. Soc. 134 (2012) 16987.   DOI
11 R. Singuru, K. Dhanalaxmi, S.C. Shit, B.M. Reddy, J. Mondal, ChemCatChem 9 (2017) 2550.   DOI
12 A.A. Ibrahim, A. Lin, F.M. Zhang, K.M. AbouZeid, M.S. El-Shall, ChemCatChem 9 (2017) 469.   DOI
13 Z.B. Zhu, H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Green Chem. 16 (2014) 2636.   DOI
14 J. Kayalvizhi, A. Pandurangan, Mol. Catal. 436 (2017) 67.   DOI
15 R.F. Nie, X.L. Peng, H.F. Zhang, X.L. Yu, X.H. Lu, D. Zhou, Q.H. Xia, Catal. Sci. Technol. 7 (2017) 627.   DOI
16 F.M. Zhang, S. Zheng, Q. Xiao, Y.J. Zhong, W.D. Zhu, A. Lin, M.S. El-Shall, Green Chem. 18 (2016) 2900.   DOI
17 S. Verma, R.B.N. Baig, M.N. Nadagouda, R.S. Varma, Green Chem. 18 (2016) 1327.   DOI
18 R.F. Nie, H.H. Yang, H.F. Zhang, X.L. Yu, X.H. Lu, D. Zhou, Q.H. Xia, Green Chem. 19 (2017) 3126.   DOI
19 Z.F. Lv, Q. Sun, X.J. Meng, F.S. Xiao, J. Mater. Chem. A 1 (2013) 8630.   DOI
20 F.M. Zhang, Y. Jin, Y.H. Fu, Y.J. Zhong, W.D. Zhu, A.A. Ibrahim, J. Mater. Chem. A 3 (2015) 17008.   DOI
21 L. Petitjean, R. Gagne, E.S. Beach, D.Q. Xiao, P.T. Anastas, Green Chem. 18 (2016) 150.   DOI
22 C. Andronescu, S. Barwe, E. Ventosa, J. Masa, E. Vasile, B. Konkena, S. Moller, W. Schuhmann, Angew. Chem. Int. Ed. 56 (2017) 11258.   DOI
23 T. Ye, W.M. Huang, L.M. Zeng, M.L. Li, J.L. Shi, Appl. Catal. B 210 (2017) 141.   DOI
24 B. Zhang, Z.H. Dong, D.J. Sun, T. Wu, Y.J. Li, J. Ind. Eng. Chem. 49 (2017) 208.   DOI
25 L. Lu, J. Li, D.H.L. Ng, P. Yang, P. Song, M. Zuo, J. Ind. Eng. Chem. 46 (2017) 315.   DOI
26 M. Li, M. Wei, D.G. Evans, Catal. Today 247 (2017) 163.
27 P. Benito, M. Herrero, C. Barriga, F.M. Labajos, V. Rives, Inorg. Chem. 47 (2008) 5453.   DOI
28 I. Carpani, M. Berrettoni, M. Giorgetti, D. Tonelli, J. Phys. Chem. B 110 (2006) 7265.   DOI
29 M. Adachi-Pagano, C. Forano, J.-P. Besse, J. Mater. Chem. 13 (2003) 1988.   DOI
30 P. Li, P.P. Huang, F.-F. Wei, Y.-B. Sun, C.-Y. Cao, W.-G. Song, J. Mater. Chem. A 2 (2014) 12739.   DOI
31 R. Ma, J.B. Liang, K. Takada, T. Sasaki, J. Am. Chem. Soc. 133 (2010).
32 R.H. Ouyang, D.E. Jiang, ACS Catal. 5 (2015) 6624.   DOI
33 J.Z. Chen, R.L. Liu, Y.Y. Guo, L.M. Chen, H. Gao, ACS Catal. 5 (2015) 722.   DOI
34 E. Furimsky, F.E. Massoth, Catal. Today 52 (1999) 381.   DOI
35 A.B. Bindwal, P.D. Vaidya, Energy Fuels 28 (2014) 3357.   DOI