DOI QR코드

DOI QR Code

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju (Graduate School of Chemical Sciences and Engineering, Hokkaido University) ;
  • Tadanaga, Kiyoharu (Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University) ;
  • Hayashi, Akitoshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University) ;
  • Tatsumisago, Masahiro (Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University)
  • Received : 2020.09.08
  • Accepted : 2020.12.07
  • Published : 2021.05.28

Abstract

Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

Keywords

Acknowledgement

The present study was supported by JSPS KAKENHI Grant Numbers JP 25289230 and JP24656391.

References

  1. X. Huang, Z. Zeng and H. Zhang, Chem. Soc. Rev., 2013, 42(5), 1934. https://doi.org/10.1039/c2cs35387c
  2. D. Chen, L. Tang and J. Li, Chem. Soc. Rev., 2010, 39(8), 3157-3180. https://doi.org/10.1039/b923596e
  3. K. F. Mak and J. Shan, Nat. Photonics, 2016, 10(4), 216-226. https://doi.org/10.1038/nphoton.2015.282
  4. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Science, 2004, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
  5. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande and H. Lee, Materials Today, 2017, 20(3), 116-130. https://doi.org/10.1016/j.mattod.2016.10.002
  6. Y. Lin and J. W. Connell, Nanoscale, 2012, 4(22), 6908. https://doi.org/10.1039/c2nr32201c
  7. J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange and B. Zhang, J. Am. Chem. Soc., 2018, 140(11), 3876-3879. https://doi.org/10.1021/jacs.8b00752
  8. L. Zeng, T. S. Zhao, Nano Energy, 2015, 11, 110-118. https://doi.org/10.1016/j.nanoen.2014.10.019
  9. Q. Wang, D. O'Hare, Chem. Rev., 2012, 112(7), 4124- 4155. https://doi.org/10.1021/cr200434v
  10. Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc., 2006, 128(14), 4872-4880. https://doi.org/10.1021/ja0584471
  11. Y. Li, M. Gong, Y. Liang, J. Feng, J. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun., 2013, 4(1), 1805. https://doi.org/10.1038/ncomms2812
  12. H. S. Kim, Y. Yamazaki, J. D. Kim, T. Kudo, and I. Honma, Solid State Ionics, 2010, 181(19-20), 883. https://doi.org/10.1016/j.ssi.2010.04.037
  13. P. Zhang, S. Sago, T. Yamaguchi, G. M. Anilkumar, J. Power Sources, 2013, 230, 225-229. https://doi.org/10.1016/j.jpowsour.2012.12.064
  14. J. P. Maria, R. de M. Bruno, N. Spyridon, C.F. Fabio, C.T. Ana, J. Nanopart Res., 2013, 15(2), 1-14.
  15. K. Tadanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, Adv. Mater., 2010, 22(39), 4401-4403. https://doi.org/10.1002/adma.201001766
  16. Y. Furukawa, K. Tadanaga, A. Hayashi and M. Tatsumisago, Solid State Ionics, 2011, 192(1), 185-187. https://doi.org/10.1016/j.ssi.2010.05.032
  17. D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Electroanal. Chem. 2012, 671, 102-105. https://doi.org/10.1016/j.jelechem.2012.02.007
  18. S. Ishiyama, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, Mater. Res. Bull., 2019, 119, 110561. https://doi.org/10.1016/j.materresbull.2019.110561
  19. D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Power Sources, 2013, 222, 493-497. https://doi.org/10.1016/j.jpowsour.2012.08.093
  20. D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Mater. Chem. A, 2013, 1(23), 6804-6809. https://doi.org/10.1039/c3ta10440k
  21. T. Takeguchi, H. Takahashi, T. Yamanaka, A. Nakamura, W. Ueda, ECS Trans., 2010, 33(1), 1847-1851. https://doi.org/10.1149/1.3484675
  22. H. Takahashi, T. Takeguchi, T. Yamanaka, T. Kyomen, M. Hanaya, W. Ueda, ECS Trans., 2010, 33(1), 1861-1866. https://doi.org/10.1149/1.3484677
  23. M. Matsuda, T. Murota, H. Takahashi, T. Takeguchi, W. Ueda, ECS Trans., 2010, 33(1), 1831-1836. https://doi.org/10.1149/1.3484673
  24. T. Hibino, Y. Shen, M. Nishida, and M. Nagao, Angew. Chem. Int. Ed., 2012, 124(42), 10944-10948. https://doi.org/10.1002/ange.201205022
  25. T. Hibino, K. Kobayashi, J. Mater. Chem. A, 2013, 1(4), 1134. https://doi.org/10.1039/C2TA00368F
  26. T. Hibino, K. Kobayashi, J. Mater. Chem. A, 2013, 1(23), 6934. https://doi.org/10.1039/c3ta10769h
  27. M. Sadakiyo, H. Kasai, K. Kato, M. Takata, M. Yamauchi, J. Am. Chem.Soc., 2014, 136(5), 1702-1705. https://doi.org/10.1021/ja410368j
  28. P. Sun, R. Ma, X. Bai, K. Wang, H. Zhu, T. Sasaki, Sci. Adv., 2017, 3(4), e1602629. https://doi.org/10.1126/sciadv.1602629
  29. J. Rocha, M. del Arco, V. Rives, M. A. Ulibarri, J. Mater. Chem., 1999, 9(10), 2499-2503. https://doi.org/10.1039/a903231b
  30. K. Tadanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, J. Electrochem. Soc., 2012, 159(4), B368. https://doi.org/10.1149/2.007204jes
  31. J.T. Kloprogge, L. Hickey, R. L. Frost, J. Mater. Sci., 2002, 21, 603-605. https://doi.org/10.1007/s10854-009-9964-6