Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01424

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide  

Kubo, Daiju (Graduate School of Chemical Sciences and Engineering, Hokkaido University)
Tadanaga, Kiyoharu (Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University)
Hayashi, Akitoshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University)
Tatsumisago, Masahiro (Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 230-236 More about this Journal
Abstract
Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.
Keywords
Layered Double Hydroxide; Hydroxide Ion Conductor; Ionic Conduction Mechanism; Deuterium Water Replacement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Hibino, Y. Shen, M. Nishida, and M. Nagao, Angew. Chem. Int. Ed., 2012, 124(42), 10944-10948.   DOI
2 T. Hibino, K. Kobayashi, J. Mater. Chem. A, 2013, 1(4), 1134.   DOI
3 T. Hibino, K. Kobayashi, J. Mater. Chem. A, 2013, 1(23), 6934.   DOI
4 Y. Li, M. Gong, Y. Liang, J. Feng, J. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun., 2013, 4(1), 1805.   DOI
5 H. S. Kim, Y. Yamazaki, J. D. Kim, T. Kudo, and I. Honma, Solid State Ionics, 2010, 181(19-20), 883.   DOI
6 P. Zhang, S. Sago, T. Yamaguchi, G. M. Anilkumar, J. Power Sources, 2013, 230, 225-229.   DOI
7 K. Tadanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, J. Electrochem. Soc., 2012, 159(4), B368.   DOI
8 M. Sadakiyo, H. Kasai, K. Kato, M. Takata, M. Yamauchi, J. Am. Chem.Soc., 2014, 136(5), 1702-1705.   DOI
9 P. Sun, R. Ma, X. Bai, K. Wang, H. Zhu, T. Sasaki, Sci. Adv., 2017, 3(4), e1602629.   DOI
10 J. Rocha, M. del Arco, V. Rives, M. A. Ulibarri, J. Mater. Chem., 1999, 9(10), 2499-2503.   DOI
11 J.T. Kloprogge, L. Hickey, R. L. Frost, J. Mater. Sci., 2002, 21, 603-605.   DOI
12 D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Electroanal. Chem. 2012, 671, 102-105.   DOI
13 J. P. Maria, R. de M. Bruno, N. Spyridon, C.F. Fabio, C.T. Ana, J. Nanopart Res., 2013, 15(2), 1-14.
14 K. Tadanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, Adv. Mater., 2010, 22(39), 4401-4403.   DOI
15 Y. Furukawa, K. Tadanaga, A. Hayashi and M. Tatsumisago, Solid State Ionics, 2011, 192(1), 185-187.   DOI
16 S. Ishiyama, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, Mater. Res. Bull., 2019, 119, 110561.   DOI
17 D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Power Sources, 2013, 222, 493-497.   DOI
18 D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Mater. Chem. A, 2013, 1(23), 6804-6809.   DOI
19 T. Takeguchi, H. Takahashi, T. Yamanaka, A. Nakamura, W. Ueda, ECS Trans., 2010, 33(1), 1847-1851.   DOI
20 H. Takahashi, T. Takeguchi, T. Yamanaka, T. Kyomen, M. Hanaya, W. Ueda, ECS Trans., 2010, 33(1), 1861-1866.   DOI
21 M. Matsuda, T. Murota, H. Takahashi, T. Takeguchi, W. Ueda, ECS Trans., 2010, 33(1), 1831-1836.   DOI
22 K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Science, 2004, 306(5696), 666-669.   DOI
23 X. Huang, Z. Zeng and H. Zhang, Chem. Soc. Rev., 2013, 42(5), 1934.   DOI
24 D. Chen, L. Tang and J. Li, Chem. Soc. Rev., 2010, 39(8), 3157-3180.   DOI
25 K. F. Mak and J. Shan, Nat. Photonics, 2016, 10(4), 216-226.   DOI
26 W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande and H. Lee, Materials Today, 2017, 20(3), 116-130.   DOI
27 Y. Lin and J. W. Connell, Nanoscale, 2012, 4(22), 6908.   DOI
28 L. Zeng, T. S. Zhao, Nano Energy, 2015, 11, 110-118.   DOI
29 Q. Wang, D. O'Hare, Chem. Rev., 2012, 112(7), 4124- 4155.   DOI
30 Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc., 2006, 128(14), 4872-4880.   DOI
31 J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange and B. Zhang, J. Am. Chem. Soc., 2018, 140(11), 3876-3879.   DOI