Sorption of Arsenate by the Calcined Mg-Al Layered Double Hydroxide

소성된 Mg-Al Layered Double Hydroxide에 의한 비소(V)의 흡착

  • Seo, Young-Jin (Gyeongsangbukdo Agricultural Research and Extention Services) ;
  • Kang, Yun-Ju (Gyeongsangbukdo Government Public Institute of Health and Environment) ;
  • Choi, Jung (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jun-Hyeong (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Park, Man (Department of Agricultural Chemistry, Kyungpook National University)
  • 서영진 (경상북도농업기술원) ;
  • 강윤주 (경상북도보건환경연구원) ;
  • 최정 (경북대학교 농화학과) ;
  • 김준형 (경북대학교 농화학과) ;
  • 박만 (경북대학교 농화학과)
  • Received : 2008.04.30
  • Accepted : 2008.08.20
  • Published : 2008.12.30

Abstract

Special concern has been given to the elevated arsenic content in soils because of its high mobility and toxicity. Layered double hydroxide (LDH) which has a high anionic exchange capacity is another potential anion adsorbent for toxic anions such as arsenic, chromate and selenium etc. The uptake of arsenate from aqueous solutions by the calcined Mg-Al LDH has been investigated. The sorption capacity was about 530 mmol/kg. Sorption isotherm was defined as L-type in which arsenate was removed by LDH through anion uptake reaction. Arsenate sorption by the calcined Mg-Al LDH was occurred by reconstruction of LDH's framework. Competitive adsorption revealed that Mg-Al LDH had higher selectivity for arsenate than for sulfate. These results strongly suggest that calcined Mg-Al LDH has a promising potential for efficient removal of toxic metal oxides like arsenates from aqueous environments.

Mg-Al LDH를 이용하여 수용액중 비소와의 반응특성을 규명하고 비소 제거제로서 활용가능성을 규명하기 위하여 비소의 흡착특성, 제거효율 및 제거기작에 대한 조사를 하였다. Mg-Al LDH는 소성(calcination)에 의한 탈수로 Mg oxide 형태를 나타내었고 비소를 흡착시킨 결과 반응 22시간 이후에 흡착평형에 도달하였으며 흡착량은 약 530 mmol/kg정도였다. 반응농도별 LDH의 등온흡착은 L-type의 흡착반응을 나타내었다. 소성된 Mg-Al LDH는 용액중에서 재수화(rehydration) 될 때 비소가 LDH의 구조의 복구과정(reconstruction)에서 이온교환 반응에 의해 층간삽입이 일어나는 것으로 나타났다. LDH에 대한 arsenate와 phosphate, arsenate와 sulfate의 경쟁흡착 결과 arsenate와 phosphate의 선택성은 비슷한 편이었고, arsenate는 sulfate에 비해 선택성이 우수하였다. 따라서 calcined Mg-Al LDH는 비교적 높은 비소 제거효율을 나타내므로 비소 제거제로서 사용 가능성이 매우 높은 것으로 판단된다.

Keywords

References

  1. Appelo, C.A.J., M.J.J. Van Der Weiden, C. Tournassat, and L. Charlet. 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36:3096-3103. https://doi.org/10.1021/es010130n
  2. Cai, Y., J.C. Cabrera, M. Georgiadis, and K. Jayachandran. 2002. Assessment of arsenic mobility in the soils of some golf courses in the south Florida. Science of The Total Environment 291:123-134. https://doi.org/10.1016/S0048-9697(01)01081-6
  3. Cavani, F., F. Trifiro, and A. Vaccari. 1991. Hydrotalcite-type anionic clay : preperation, properties and application. Catal. Today 11:173-301. https://doi.org/10.1016/0920-5861(91)80068-K
  4. Chen, M., L.Q. Ma, and W.G. Harriss. 2002. Arsenic concentrations in Florida surface soils: Influence of soil type and properties. Soil Sci. Soc. Am. J. 66:632-640. https://doi.org/10.2136/sssaj2002.0632
  5. Corma, A., V. Fornes, and F. Rey. 1994. Hydro-talcites as base catalysts : influence of the chemical composition and synthesis conditions on the dehydration. J. Catal. 148:205-212. https://doi.org/10.1006/jcat.1994.1202
  6. Crepaldi, E.L, J. Tronto, L.P. Cardoso, and J.B. Valim. 2002. Sorption of terephthalate anions by calcined and uncalcined hydrotalcite like compounds. Colloidals and Surface A : Physicochemical and Engineering Aspects 211:103-114 https://doi.org/10.1016/S0927-7757(02)00233-9
  7. Darland, J.E., and W.P. Inskeep. 1997. Effects of pore water velocity on the transport of arsenate. Environ. Sci. Technol. 31:704-709 https://doi.org/10.1021/es960247p
  8. Elkhatib, E.A., O.L. Bennett, and R.J. Wright. 1984. Arsenite sorption and desorption in soils. Soil Sci. Soc. Am. J. 48:1025-1030 https://doi.org/10.2136/sssaj1984.03615995004800050015x
  9. Francesconi, K., P. Visoottiviseth, W. Sridokchan, and W. Goessler. 2002. Arsenic species in an arsenic hyper-accumulating fern, Pityrogrmma calomelanos: a potential phyto-remidiator of arsenic contaminated soil. The Sci. of the Total Environ. 284:27-35. https://doi.org/10.1016/S0048-9697(01)00854-3
  10. Fendorf, S., M.J. Eick, P. Grossl, and D.L. Sparks. 1997. Arsenate and chromate retention mechanism on geothite. 1. Surface structure. Environ. Sci. Technol. 31:315-320 https://doi.org/10.1021/es950653t
  11. Gao, S., and R.G. Burau. 1997. Environmental factors affecting rate of arisine evolution from and mineralization of arsenicals in soil. J. Environ. Qual. 26:753-763 https://doi.org/10.2134/jeq1997.00472425002600030023x
  12. Goh, K.H., T.T. Lim, and Z. Dong. 2008. Application of layered double hydroxides for removal of oxyanions : A review. Water Research 42:1343-1368. https://doi.org/10.1016/j.watres.2007.10.043
  13. Goswamee, R.L., P. Sengupta, K.G. Bhattacharyya, and D.K. Dutta. 1998. Adsorption of Cr(VI) in layered double hydroxides. Applied clay Science 13:21-34. https://doi.org/10.1016/S0169-1317(98)00010-6
  14. Haron, M.J., W.M. Wan Yunus, N.L. Yong, and S. Tokunaga. 1999. sorption of arsenate and arsenite anions by iron(III)-poly (hydroxamic acid) complex. Chemosphere 39:2459-2466. https://doi.org/10.1016/S0045-6535(99)00155-1
  15. Hood, R.D., and W.P. Harrison. 1982. Effects of prenatal arsenite exposure in the hamster. Bull. Environ. Contam. Toxicol. 29:671-678 https://doi.org/10.1007/BF01606106
  16. Jain, A., K.P. Raven, and R.H. Loeppert. 1999. Arsenite and arsenate adsorption on ferrihydrate: Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol. 33:1179-1184. https://doi.org/10.1021/es980722e
  17. Johnston, S.E., and W.M. Barnard. 1979. Comparative effectiveness of fourteen solutions for extracting arsenic from four Western New York soils. Soil Sci. Soc. Am. J. 43:304-308. https://doi.org/10.2136/sssaj1979.03615995004300020013x
  18. Kwon, T., G.A. Tsigdinos, and T.J. Pinnavaia. 1988. Pillaring of layerd double hydroxides (LDH's) by polyoxometalate anions. J. Am. Chem. Soc. 110:3653-3654. https://doi.org/10.1021/ja00219a048
  19. Lumsdon, D.G., J.C.L. Meeussen, E. Paterson, L.M. Garden, and P. Anderson. 2001. Use of solid phase characterization and chemical modelling for assessing the behaviour of arsenic in contaminated soils. Applied Geochemistry 16:571-581. https://doi.org/10.1016/S0883-2927(00)00063-9
  20. Ma, L.Q., F. Tan, and W.G. Harris. 1997. Concentration and distribution of eleven metals in Florida soils. J. Environ. Qual. 26:769-775. https://doi.org/10.2134/jeq1997.00472425002600030025x
  21. McGeehan, S.L., and D.V. Naylor. 1994. Sorption and redox transformation of arsenite and arsenate in two flooded soils. Soil Sci. Soc. Am. J. 58:337-342. https://doi.org/10.2136/sssaj1994.03615995005800020012x
  22. Olanrewaju, J., B.L. Newalkar, C. mancino, and S. Komarneni. 2000. Simplfied synthesis of nitrate form of layered double hydroxide. Materials Letters 45:307-310. https://doi.org/10.1016/S0167-577X(00)00123-3
  23. Onken. B.M., and D.C. Adriano. 1997. Arsenic availability in soil with time under saturated and subsaturated conditions. Soil Sci. Soc. Am. J. 61:746-752. https://doi.org/10.2136/sssaj1997.03615995006100030007x
  24. Su, C., and R.W. Puls. 2001. Arsenate and arsenite removal by zerovalent iron : kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 35:1487-1492. https://doi.org/10.1021/es001607i
  25. Tu, C., and L.Q. Ma. 2002. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J. Environ. Qual. 31:641-647. https://doi.org/10.2134/jeq2002.0641
  26. You, Y., G.F. Vance, and H. Zhao. 2001. Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science 20:13-25. https://doi.org/10.1016/S0169-1317(00)00043-0
  27. Zhao, H.T., and G.F. Vance. 1998. Selectivity and molecular sieving effects of organic compounds on the intercalate of $\beta$-cyclo dextrin and layered double hydroxide. Clays Clay Miner. 46:712-718. https://doi.org/10.1346/CCMN.1998.0460612