• Title/Summary/Keyword: layer-by-layer method

Search Result 6,978, Processing Time 0.044 seconds

Effects of Antimicrobial and Cytotoxicity of Undaria pinnatifida Sporophyll Fractions (미역귀 분획물의 항균 · 암세포 성장저지 효과)

  • Park, Soung-Young;Jung, Young-Hwa;Shin, Mi-Ok;Jung, Bok-Mi;Bae, Song-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.765-770
    • /
    • 2005
  • In this study, we investigated antimicrobial and cytotoxicity effects of Undaria pinnatifida Sporophyll, which using methanol, dichloromethane and ethanol were extracted and fractionated into four different types: methanol (UPMM), hexane (UPMH), butanol (UPMB) and aqueous (UPMA). The antimicrobial activity was increased in proportion to its concentration by the paper disc method. Among the solvent fractions, UPMM and UPMB showed relatively strong antimicrobial activities in the order. Among various partition layers, the methanol partition layer (UPMM) was showed the strongest cytotoxic effects on all cancer cell lines. We also observed quinone reductase (QR) induced effects in all fraction layers of UP on HepG2 cells. The QR induced effects of UPMH on HepG2 cells at $320\mu g/mL$ concentration indicated 2.36 with a control value of 1.0.

Experimental Study of The Corrosion Protection Performance of The Metal Spraying Process in accordance with ratio of Zn-Al (Zn-Al의 구성비율에 따른 금속용사 공법의 방식성능에 대한 실험적 연구)

  • Kim, Hae;Eom, Sung-Hyun;Jeong, Hyun-Gyu;Lee, Jeong-Bae;Kim, Seong-Soo;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.56-65
    • /
    • 2017
  • This study is an experimental study on the corrosion protection performance according to the configuration ratio of the Zn and Al. A metal spraying was used as the arc metal spraying method, a specimen was produced by varying the proportion ratio and coating thickness of the Zn and Al. Experimental methods visually observed to corrosion of the specimen for 1, 3, 7, 15 days was conducted in accordance with the CASS salt spray test. This study has confirmed that the performance of the corrosion protection improved against the increase in the Al content. Further, it was confirmed that excellent perfomance is exhibited when the coating thickness is secured over $80{\mu}m$. In addition, the SEM analysis was performed to observe the cross-sectional shape of the metal spraying specimen after CASS testing. The analysis result showed that the deterioration of the metal spraying coating layer was reduced as the Al content increases.

Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester (IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성)

  • Lee, Min-seon;Kim, Chang-Il;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jang, Yong-Ho;Choi, Beom-Jin;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.581-588
    • /
    • 2016
  • Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Efficacy of Antagonistic Bacteria for Biological Control of Rhizoctonia Blight (Large patch) on Zoysiagrass (잔디 갈색퍼짐병(Large patch)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Kim, Bong-Su;Im, Jae-Seong;Lee, Jae-Ho;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Rhizoctonia blight (large patch) caused by Rhizoctonia solani AG2-2 is one of the major diseases on zoysiagrass in golf courses. In this study, anatgonistic bacteria to R. solani AG2-2 were selected in vitro tests using confrontation bioassay and triple layer agar diffusion method. The most active bacteria, Bacillus subtilis CJ-9 were tested for controlling large patch in pots. Relative Performance Indies (RPI) was used as a criterion for the selection of potential biocontrol agent. B. subtilis CJ-9 showed resistance to major synthetic agrochemicals used in golf course. In field tests at golf course, B. subtilis CJ-9 was more effective in suppression of large patch severity and population development of R. solani AG2-2 in soil than chemical fungicides. B. subtilis CJ-9 could be an alternative to chemical fungicides for eco-friendly management of large patch on zoysiagrass.

Changes in Salinity, Hydraulic Conductivity and Penetration Resistance of a Silt Loam Soil in a Reclaimed Tidal Land (미사질 양토인 간척지 토양에서의 염류도와 수리전도도 및 관입 저항의 변화)

  • Jung, Yeong-Sang;Yoo, Sun-Ho;An, Yeol;Joo, Jin-Ho;Yu, Il-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • Changes in salinity, hydraulic conductivity and penetration resistance in a reclaimed tidal land reclaimed in 1986 were studied. The salinity monitoring based on electrical conductivity of saturated extract, ECe, was conducted from 1994, when the land use for experimental crop production started after tile drainage. The site was abandoned since 1999. The hydraulic conductivity was measured by a sand fill auger hole method, and the resistance was measured with a dynamic penetrometer in situ. The averaged ECe in 1994 was $33.7dS\;m^{-1}$ ranging from 25.5 to $44.8dS\;m^{-1}$, and was decreased to $25.7dS\;m^{-1}$ with large range from 0.8 to $70.3dS\;m^{-1}$ before experiment was $1.89{\times}10^{-7}m\;s^{-1}$. It increased to $1.32{\times}10^6m\;s^{-1}$ in the top 20-cm soil with large variability, while it showed $3.44{\times}10^7m\;s^{-1}$ beneath the 20-cm soil depth with less variability. The penetration resistance of the soil ranged from 0.05 to 9.99MPa. The vertical distribution of penetration resistance indicated the hardened layer was developed at the depth of 20~40 cm where the hydraulic conductivity was sharply decreased.

Preparation of Cosmeceuticals Containing Broussonetia kazinoki Extracts: Optimization Using Central Composite Design Method (닥나무 추출물이 함유된 Cosmeceuticals의 제조: 중심합성계획모델을 이용한 최적화)

  • Hong, Seheum;Park, Bo Ra;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.682-689
    • /
    • 2018
  • In this paper, the stability criteria of cosmeceuticals emulsion containing Broussonetia kazinoki extracts was established using the central composite design model. As optimization conditions of the emulsification using the central composite design model, concentrations of the emulsifier and emulsion stabilizer were used as a quantitative factor while emulsion stability index (ESI) and polydispersity index (PDI) were used as a reaction value. The targeted values of ESI and PDI were estimated as over 60% and the minimum number, respectively. Optimized concentrations of the emulsifier and emulsion stabilizer were 3.73 and 3.07 wt%, respectively, from the emulsification optimization based on ESI and PDI values. The estimated reaction values of ESI and PDI were 60% and 0.585, respectively. As concentrations of the emulsifier and emulsion stabilizer increased, the stability of the emulsion prepared tended to increase. The emulsifier was one of the most influential factors for ESI than the emulsion stabilizer. On the other hand, the PDI value was similarly affected by both the emulsion and emulsion stabilizer. The ESI of the cosmeceuticals emulsion prepared under experimental conditions deduced from the central synthesis planning model showed at least about 45% of the stability. However, all of the emulsions were separated after 4 weeks from the initial preparation. When the concentration of the emulsifier was more than 3.72 wt%, the ESI value was over 60%. Also the layer separation rate decreased with increasing the emulsion stabilizer concentration.

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

Assessment of CH4 oxidation in macroinvertebrate burrows of tidal flats (갯벌의 무척추 동물 서식굴 내 메탄산화 평가)

  • Kang, J.;Kwon, K.;Woo, H.J.;Choi, J.U.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • In tidal flats that lack plants, methane ($CH_4$) fluxes are both positive (gas emission) and negative (gas "sinking") in nature. The levels of methanotroph populations significantly affect the extent of $CH_4$ sinking. This preliminary study examined $CH_4$ flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the $CH_4$ and $CO_2$ concentrations were continuously monitored using a closed, diffuse $CH_4/CO_2$ flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level $CH_4$ production, likely due to diffusive emission of $CH_4$ in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has $CH_4$ oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed $CH_4$-oxidation process was supported by the decrease in the ${\delta}^{13}C$ of headspace $CO_2$ during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric $CH_4$ over tidal flats.

Object Detection on the Road Environment Using Attention Module-based Lightweight Mask R-CNN (주의 모듈 기반 Mask R-CNN 경량화 모델을 이용한 도로 환경 내 객체 검출 방법)

  • Song, Minsoo;Kim, Wonjun;Jang, Rae-Young;Lee, Ryong;Park, Min-Woo;Lee, Sang-Hwan;Choi, Myung-seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.944-953
    • /
    • 2020
  • Object detection plays a crucial role in a self-driving system. With the advances of image recognition based on deep convolutional neural networks, researches on object detection have been actively explored. In this paper, we proposed a lightweight model of the mask R-CNN, which has been most widely used for object detection, to efficiently predict location and shape of various objects on the road environment. Furthermore, feature maps are adaptively re-calibrated to improve the detection performance by applying an attention module to the neural network layer that plays different roles within the mask R-CNN. Various experimental results for real driving scenes demonstrate that the proposed method is able to maintain the high detection performance with significantly reduced network parameters.