Browse > Article
http://dx.doi.org/10.17663/JWR.2019.21.2.095

Assessment of CH4 oxidation in macroinvertebrate burrows of tidal flats  

Kang, J. (Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology)
Kwon, K. (Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology)
Woo, H.J. (Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology)
Choi, J.U. (Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology)
Publication Information
Journal of Wetlands Research / v.21, no.2, 2019 , pp. 95-101 More about this Journal
Abstract
In tidal flats that lack plants, methane ($CH_4$) fluxes are both positive (gas emission) and negative (gas "sinking") in nature. The levels of methanotroph populations significantly affect the extent of $CH_4$ sinking. This preliminary study examined $CH_4$ flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the $CH_4$ and $CO_2$ concentrations were continuously monitored using a closed, diffuse $CH_4/CO_2$ flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level $CH_4$ production, likely due to diffusive emission of $CH_4$ in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has $CH_4$ oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed $CH_4$-oxidation process was supported by the decrease in the ${\delta}^{13}C$ of headspace $CO_2$ during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric $CH_4$ over tidal flats.
Keywords
Methane oxidation; Stable carbon isotopes; Bioturbation; Tidal flat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boetlus, A, Ravenschlag, K, Schubert, CJ, Rickert, D, Widdel, F, Gieseke, A, Amann, R, Jorgensen, BB, Witte, U and Pfannkuche, O (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, pp. 623-626. doi:10.1038/35036572   DOI
2 Chiodini, G, Cioni, R, Guidi, M, Raco, B and Marini, L (1998). Soil $CO_2$ flux measurements in volcanic and geothermal areas, Applied Geochemistry, 13, pp. 543-552. doi:10.1016/S0883-2927(97)00076-0   DOI
3 Choi, J-K, Oh, H-J, Koo, BJ, Ryu, J-H and Lee, S (2011). Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS, Ecological Modelling, 222, pp. 1522-1533. doi:10.1016/j.ecolmodel.2010.12.008   DOI
4 Cui, M, Ma, A, Qi, H, Zhuang, X and Zhuang, G (2015). Anaerobic oxidation of methane: an "active" microbial process, MicrobiologyOpen, 4(1), pp. 1-11. doi:10.1002/mbo3.232   DOI
5 D'Andrea, AF and DeWitt, TH (2009). Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling, Limnology and Oceanography, 54, pp. 1911-1932. doi:10.4319/lo.2009.54.6.1911   DOI
6 Egger, M, Rasigraf, O, Sapart, CJ, Jilbert, T, Jetten, MSM, Rockmann, T, van der Veen, C, Banda, N, Kartal, B, Ettwig, KF and Slomp, CP (2015). Iron-mediated anaerobic oxidation of methane in brackish coastal sediments, Environmental Science and Technology, 49, pp. 277-283. doi:10.1021/es503663z   DOI
7 Fridriksson, T, Padron, E, Oskarsson, F and Perez, NM (2016). Application of diffuse gas flux measurements and soil gas analysis to geothermal exploration and environmental monitoring: Example from the Reykjanes geothermal field, SW Iceland, Renewable Energy, 86, pp. 1295-1307. doi:10.1016/j.renene.2015.09.034   DOI
8 Furukawa, Y (2001). Biogeochemical consequences of macrofauna burrow ventilation, Geochemical Transactions, doi:10.1039/b108381c.   DOI
9 Ishizuka, S, Sakata, T and Ishizuka, K (2000). Methane oxidation in Japanese forest soils, Soil Biology and Biochemistry, 32, pp. 769-777. doi:10.1016/S0038-0717(99)00200-X   DOI
10 Hughes, DJ, Atkinson, RJA and Ansell, AD (2000). A field test of the effects of megafaunal burrows on benthic chamber measurements of sediment-water solute fluxes, Marine Ecology Progress Series, 195, pp. 189-199. doi:10.3354/meps195189   DOI
11 Kang, J, Koo, BJ, Jeong, K-S, Woo, HJ, Seo, J, Seo, H-S, Kim, M-S and Kwon, K (2018). Insights into macroinvertebrate burrowing activity and methane flux in tidal flats, proceedings of the 15th International Coastal Symposium, South Korea, 13-18 May 2018, pp. 681-685. doi:10.2112/SI85-137.1
12 Mora, G and Raich, JW (2007). Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium, Rapid Communications Mass Spectrometry, 21, pp. 1866-1870. doi:10.1002/rcm.3034   DOI
13 Kim, W-M (2014). A study on carbon dioxide and methane concentrations, and carbon isotopes as measured in East Asia during 1991-2011, Master's Thesis, Korea National University of Education, Cheongju-si, Chungbuk. [Korean literature]
14 Kristensen, E, Flindt, MR, Ulomi, S, Borges, AV, Abril, G and Bouillon, S (2008). Emission of $CO_2$ and $CH_4$ to the atmosphere by sediments and open waters in two Tanzanian mangrove forests, Marine Ecology Progress Series, 370, pp. 53-67. doi:10.3354/meps07642   DOI
15 Migne, A, Davoult, D, Spilmont, N, Menu, D, Boucher, G, Gattuso, J-P and Rybarczyk, H (2002). A closed-chamber $CO_2$-flux method for estimating intertidal primary production and respiration under emersed conditions, Marine Biology, 140, pp. 865-869. doi:10.1007/s00227-001-0741-1   DOI
16 Takahashi, K, Tomita, J, Nishioka, K, Hisada, T and Nishijima, M (2014). Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing, PLoS One, 9, e105592. doi:10.1371/journal.pone.0105592   DOI
17 Morrisey, DJ, DeWitt, TH, Roper, DS and Williamson, RB (1999). Variation in the depth and morphology of burrows of the mud crab Helice crassa among different types of intertidal sediment in New Zealand, Marine Ecology Progress Series, 182, pp. 231-242. doi:10.3354/meps182231   DOI
18 Nogaro, G and Burgin, AJ (2014). Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments, Biogeochemistry, 120, pp. 279-294. doi:10.1007/s10533-014-9995-9   DOI
19 Otani, S, Kozuki, Y, Yamanaka, R, Sasaoka, H, Ishiyama, T, Okitsu, Y, Sakai, H and Fujiki, Y (2010). The role of crabs (Macrophthalmus japonicas) burrows on organic carbon cycle in estuarine tidal flat, Japan, Estuarine, Coastal and Shelf Science, 86, pp. 434-440. doi:10.1016/j.ecss.2009.07.033   DOI
20 Schroder, IF, Zhang, H, Zhang, C and Feitz, AJ (2016). The role of soil flux and soil gas monitoring in the characterization of a CO2 surface leak: A case study in Qinghai, China, International Journal of Greenhouse Gas Control, 54, pp. 84-95. doi:10.1016/j.ijggc.2016.07.030   DOI
21 Ueyama, M, Takeuchi, R, Takahashi, Y, Ide, R, Ataka, M, Kosugi, Y, Takahashi, K and Saigusa, N (2015). Methane uptake in a temperate forest soil using continuous closed-chamber measurements, Agricultural and Forest Meteorology, 213, pp. 1-9. doi:10.1016/j.agrformet.2015.05.004   DOI
22 Widory, D, Proust, E, Bellenfant, G and Bour, O (2012). Assessing methane oxidation under landfill covers and its contribution to the above atmospheric $CO_2$ levels: The added value of the isotope (${\delta}^{13}C$ and ${\delta}^{18}O\;CO_2$;${\delta}^{13}C$ and ${\delta}D\;CH_4$) approach, Waste Management, 32, pp. 1685-1692. doi:10.1016/j.wasman.2012.04.008   DOI