DOI QR코드

DOI QR Code

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information

기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법

  • Lee, Donghun (Department of Industrial and Management Engineering, Incheon National University) ;
  • Kim, Kwanho (Department of Industrial and Management Engineering, Incheon National University)
  • Received : 2018.11.09
  • Accepted : 2019.01.29
  • Published : 2019.02.28

Abstract

Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

최근 온실가스의 증가로 인한 기후변화 대응의 필요성과 전력수요의 증가로 인해 태양광발전량(PV) 예측의 중요성은 급격히 증가하고 있다. 특히, 태양광 발전량을 예측하는 것은 합리적인 전력 가격결정과 시스템 안정성 및 전력 생산 균형과 같은 문제를 효과적으로 해결하기 위해 전력생산 계획을 합리적으로 계획하는데 도움이 될 수 있다. 그러나 일사량, 운량, 온도 등과 같은 기후정보 및 계절 변화로 인한 태양광 발전량이 무작위적으로 변화하기 때문에 정확한 태양광 발전량을 예측하는 것은 도전적인 일이다. 따라서 본 논문에서는 딥러닝 모델을 통해 기후 및 계절정보를 이용하여 학습함으로써 장기간 태양광 발전량 예측 성능을 향상시킬 수 있는 기법을 제안한다. 본 연구에서는 대표적인 시계열 방법 중 하나인 계절형 ARIMA 모델과 하나의 은닉층으로 구성되어 있는 ANN 기반의 모델, 하나 이상의 은닉층으로 구성되어 있는 DNN 기반의 모델과의 비교를 통해 본 연구에서 제시한 모델의 성능을 평가한다. 실데이터를 통한 실험 결과, 딥러닝 기반의 태양광 발전량 예측 기법이 가장 우수한 성능을 보였으며, 이는 본 연구에서 목표로 한 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.

Keywords

References

  1. Ashraf, I. and Chandra, A., "Artificial Neural Network Based Models for Forecasting Electricity Generation of Grid Connected Solar PV Power Plant," International Journal of Global Energy Issues, Vol. 21, No. 1-2, pp. 119-130, 2004. https://doi.org/10.1504/IJGEI.2004.004704
  2. Bae, J. K., Lee, S. Y., and Seo, H. J., "Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default," The Journal of Society for e-Business Studies, Vol. 23, No. 3, pp. 207-224, 2018. https://doi.org/10.7838/JSEBS.2018.23.3.207
  3. Cha, W. C., Park, J., Cho, U., and Kim, J. C., "Design of Generation Efficiency Fuzzy Prediction Model Using Solar Power Element Data," The Transactions of The Korean Institute of Electrical Engineers, Vol. 63, No. 10, pp. 1423-1427, 2014. https://doi.org/10.5370/KIEE.2014.63.10.1423
  4. Chen, C., Duan, S., Cai, T., and Liu, B., "Online 24-h Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network," Solar Energy, Vol. 85, No. 11, pp. 2856-2870, 2011. https://doi.org/10.1016/j.solener.2011.08.027
  5. da Silva Fonseca Jr, J. G., Oozeki, T., Takashima, T., Koshimizu, G., Uchida, Y., and Ogimoto, K., "Use of Support Vector Regression and Numerically Predicted Cloudiness to Forecast Power Output of a Photovoltaic Power Plant in Kitakyushu, Japan," Progress in Photovoltaics: Research and Applications, Vol. 20, No. 7, pp. 874-882, 2012. https://doi.org/10.1002/pip.1152
  6. Detyniecki, M., Marsala, C., Krishnan, A., and Siegel, M., "Weather-based Solar Energy Prediction," WCCI 2012 IEEE International conference on Fuzzy Systems, pp 1-7, 2012.
  7. Ding, M., Wang, L., and Bi, R., "An ANNbased Approach for Forecasting The Power Output of Photovoltaic System," Proceeding of Environmental Sciences, Vol. 11, No. 1, pp. 1308-1315, 2011. https://doi.org/10.1016/j.proenv.2011.12.196
  8. Edward, G., Box, P., and Jenkins, G. M., "Time Series Analysis: Forecasting and Control," The Journal of Technometrics, Vol. 37, pp. 238-242, 1995.
  9. Fernandez-Jimenez, L. A., Munoz-Jimenez, A., Falces, A., Mendoza-Villena, M., Garcia-Garrido, E., Lara-Santillan, P. M., Zorzano-Alba, E., and Zorzano-Santamaria, P. J., "Short-term Power Forecasting System for Photovoltaic Plants," Renewable Energy, Vol. 44, pp. 311-317, 2012. https://doi.org/10.1016/j.renene.2012.01.108
  10. Hagan, M. T. and Menhaj, M. B., "Training Feedforward Networks with the Marquardt Algorithm," Proceeding of IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 989-993, 1994. https://doi.org/10.1109/72.329697
  11. Izgi, E., Oztopal, A., Yerli, B., Kaymak, M. K., and Sahin, A. D., "Short-mid-term Solar Power Prediction by Using Artificial Neural Networks," Solar Energy, Vol. 86, No. 2, pp. 725-733, 2012. https://doi.org/10.1016/j.solener.2011.11.013
  12. Inman, R. H., Pedro, H. T., and Coimbra, C. F., "Solar Forecasting Methods for Renewable Energy Integration," Progress in Energy and Combustion Science, Vol. 39, No. 6, pp. 535-576, 2013. https://doi.org/10.1016/j.pecs.2013.06.002
  13. Jung, H. I., Park, I. S., and Ahn, H., "Identifying the Key Success Factors of Massively Multiplayer Online Role Playing Game Design using Artificial Neural Networks," The Journal of Society for e-Business Studies, Vol. 17, No. 1, pp. 23-38, 2012. https://doi.org/10.7838/jsebs.2012.17.1.023
  14. Kardakos, E. G., Alexiadis, M. C., Vagropoulos, S. I., Simoglou, C. K., Biskas, P. N., and Bakirtzis, A. G., "Application of Time Series and Artificial Neural Network Models in Short-term Forecasting of PV Power Generation," In Proceedings of the 48th International Universities Power Engineering Conference, pp. 1-6, 2013.
  15. Kim, D. H. and Kim, J. O., "The Solar Power with Weather and Generator Scheduling," KIEE Summer Conference, p. 131, 2008.
  16. Kou, J., Liu, J., Li, Q., Fang, W., Chen, Z., Liu, L., and Guan, T., "Photovoltaic Power Forecasting Based on Artificial Neural Network and Meteorological Data," Proceeding of IEEE Region 10 Conference, pp. 1-4, 2013.
  17. Kingma, D. P. and Ba, J., "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
  18. Lee, I. R., Bae, I. S., Jung, C. H., Kim, J. O., and Shim, H., "Photovoltaic Generation System Output Forecasting Using Irradiance Probability Distribution Function," KIEE Summer Conference, pp. 548-550, 2004.
  19. Lee, H., "The Development of The Predict Model for Solar Power Generation Based on Current Temperature Data in Restricted Circumstances," Journal of Digital Contents Society, Vol. 17, No. 3, pp. 157-164, 2016. https://doi.org/10.9728/dcs.2016.17.3.157
  20. Li, Y., He, Y., Su, Y., and Shu, L., "Forecasting The Daily Power Output of a Grid-connected Photovoltaic System Based on Multivariate Adaptive Regression Splines," Applied Energy, Vol. 180, No. 15, pp. 392-401, 2016. https://doi.org/10.1016/j.apenergy.2016.07.052
  21. Li, Y., Su, Y., and Shu, L., "An ARMAX Model for Forecasting the Power Output of a Grid Connected Photovoltaic System," Renewable Energy, Vol. 66, No. 1, pp. 78-8, 2014. https://doi.org/10.1016/j.renene.2013.11.067
  22. Li, M., Zhang, T., Chen, Y., and Smola, A. J., "Efficient Mini-batch Training for Stochastic Optimization," In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 661-670, 2014.
  23. Liu, G., Xu, Y., and Tomsovic, K., "Bidding Strategy for Microgrid in Day-ahead Market Based on Hybrid Stochastic/ Robust Optimization," IEEE Transactions on Smart Grid, Vol. 7, No. 1, pp. 227-237, 2016. https://doi.org/10.1109/TSG.2015.2476669
  24. Pedro, H. T. and Coimbra, C. F., "Assessment of Forecasting Techniques for Solar Power Production with no Exogenous Inputs," Solar Energy, Vol. 86, No. 7, pp. 2017-2028, 2012. https://doi.org/10.1016/j.solener.2012.04.004
  25. Shi, J., Lee, W. J., Liu, Y., Yang, Y., and Wang, P., "Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines," IEEE Transactions on Industry Applications, Vol. 48, No. 3, pp. 1064-1069, 2012. https://doi.org/10.1109/TIA.2012.2190816
  26. Sulaiman, S. I., Rahman, T. A., and Musirin, I., "Partial Evolutionary ANN for Output Predictionof a Grid-Connected Photovoltaic System," International Journal of Computer and Electrical Engineering, Vol. 1, No. 1, pp. 40-45, 2009. https://doi.org/10.7763/IJCEE.2009.V1.7
  27. Tao, C., Shanxu, D., and Changsong, C., "Forecasting Power Output for Grid-connected Photovoltaic Power System without Using Solar Radiation Measurement," In Proceedings of the International Symposium on Power Electronics for Distributed Generation Systems, pp. 773-777, 2010.
  28. Wang, S., Zhang, N., Zhao, Y., and Zhan, J., "Photovoltaic System Power Forecasting Based on Combined Grey Model and BP Neural Network," In Proceedings of International Conference on Electrical and Control Engineering, pp. 4623-4626, 2011.
  29. Yule, G. U., "Why do We Sometimes Get Nonsense-Correlations Between Time-Series?: A Study in Sampling and the Nature of Time-series," Journal of the Royal Statistical Society, Vol. 89, No. 1, pp. 1-63, 1926. https://doi.org/10.2307/2341482
  30. Yu, L., Zhou, L., Tan, L., Jiang, H., Wang, Y., Wei, S., and Nie, S., "Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China," PloS one, Vol. 9, No. 6, 2014.
  31. Yona, A., Senjyu, T., Funabashi, T., and Kim, C. H., "Determination Method of Insolation Prediction with Fuzzy and Applying Neural Network for Long-term Ahead PV Power Output Correction," IEEE Transactions on Sustainable Energy, Vol. 4, No. 2, pp. 527-533, 2013. https://doi.org/10.1109/TSTE.2013.2246591
  32. Zhou, Y., Wang, C., Wu, J., Wang, J., Cheng, M., and Li, G., "Optimal Scheduling of Aggregated Thermostatically Controlled Loads with Renewable Generation in the Intraday Electricity Market," Applied Energy, Vol. 188, pp. 456-465, 2017. https://doi.org/10.1016/j.apenergy.2016.12.008