Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.9.581

Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester  

Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Chang-Il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji-sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Park, Woon Ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Jeong Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Park, Yong-Ho (Department of Material Science and Engineering, Pusan University)
Jang, Yong-Ho (Technology & Research Center, Senbool Corporation)
Choi, Beom-Jin (Technology & Research Center, Senbool Corporation)
Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.9, 2016 , pp. 581-588 More about this Journal
Abstract
Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).
Keywords
Interdigitated; Piezoelectrics; Screen printing; Actuator; Tape casting; Energy harvester;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Shen, J. Qiu, and M. balsi, Smart Mater. Struct., 19, 115017 (2010). [DOI: http://dx.doi.org/10.1088/0964-1726/19/11/115017]   DOI
2 K. B. Kim, C. I. Kim, J. S. Yun, Y. H. Jeong, J. H. Nahm, J. H. Cho, J. H. Paik S. Nahm, and T. H. Seong, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 943 (2012).
3 S. Pang, J. Kan, and W. Li, J. Comput. Inform. Syst., 11, 3203 (2015).
4 E. Lefeuvre, A. Badel, C. Richard, and D. Guyoma, J. Intel. Mat. Syst. Str., 16, 865 (2005). [DOI: http://dx.doi.org/10.1177/1045389X05056859]   DOI
5 Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou, J. Intel. Mat. Syst. Str., 24, 1445 (2013).   DOI
6 C. Richard, D. D. Guyomar, D. Audigier, and G. Ching, 1999 Symposium on Smart Mater. Struct., 104 (1999).
7 W. Y. Hur, T. Y. Lee, K. C. Lee, H. S. Hwang, and J. T. Song. J. Korean Inst. Electr. Electron. Mater. Eng., 24, 422 (2011).
8 D. Vatansever, R. L. Hadimani, T. Shah, and E. Siores, Smart Mater. Struct., 20, 055019 (2011). [DOI: http://dx.doi.org/10.1088/0964-1726/20/5/055019]   DOI
9 Y. Jiang, S. Shiono, H. Hamada, T. Fujita, K. Higuchi, and K. Maenaka, Power MEMS, 375378 (2010).
10 Y. Qi, J. H. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, and M. C. McAlpine, Nano Lett., 11, 1331 (2011). [DOI: http://dx.doi.org/10.1021/nl104412b]   DOI
11 B. Kumar and S. W. Kim, Nano Energy, 1, 342 (2012). [DOI: http://dx.doi.org/10.1016/j.nanoen.2012.02.001]   DOI
12 I. Mahmud, S. C. Ur, and M. S. Yoon, Electron. Mater. Lett., 10, 223 (2014). [DOI: http://dx.doi.org/10.1007/s13391-013-3060-z]   DOI
13 R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2006.01205.x]   DOI
14 I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seong, and J. H. Paik, J. Am. Cerm. Soc., 94, 3629 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04817.x]   DOI
15 R. Ly, M. Rguiti, S. D'Astorg, A. Hajjaji, C. Courtois, and A. Leriche, Sensor. Actuat. A-Phys., 168, 95 (2011). [DOI: http://dx.doi.org/10.1016/j.sna.2011.04.020]   DOI
16 D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C Wikle III, and D. J. Kim, J. Micromech. Microeng., 18, 055017 (2008). [DOI: http://dx.doi.org/10.1088/0960-1317/18/5/055017]   DOI
17 A. Erturk and D. J. Inman, Smart Mater. Struct., 18, 025009 (2009). [DOI: http://dx.doi.org/10.1088/0964-1726/18/2/025009]   DOI
18 D. Berlincourt and H.H.A. Krueger,\ Properties of Morgan Electro Ceramic Ceramics, www.morgan-electroceramics.com
19 S. Priya, IEEE Trans. Ultra. Ferro. Freq. Const., 57, 2610 (2010). [DOI: http://dx.doi.org/10.1109/TUFFC.2010.1734]   DOI
20 Material Data, www.piceramic.com