• Title/Summary/Keyword: layer deposition

Search Result 2,816, Processing Time 0.034 seconds

Field emission from hydrogen-free DLC

  • Suk Jae chung;Han, Eun-Jung;Lim, Sung-Hoon;Jin Jang
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 1999
  • We have studied the field emission characteristics of diamond-like-carbon (DLC) films deposited by a layer-by-layer technique using plasma enhanced chemical vapor deposition, in which the deposition of a thin layer of DLC and a CH4 plasma exposure on its surface were carried out alternatively. The hydrogen-free DLC can be deposited by CH4 plasma exposure for 140 sec on a 5 nm DLC layer. N2 gas-phase doping in the CH4 plasma was also carried out to reduce the work function of the DLC. The optimum [N2]/[CH4] flow rate ratio was found to be 9% for the efficient electron emission, at which the onset-field was 7.2 V/$\mu\textrm{m}$. It was found that the hydrogen-free DLC has a stable electron emitting property.

  • PDF

Vertical Alignment of Zinc Oxide Micro Rod with Array of 2-Dimensions (2차원 배열구조를 갖는 ZnO 마이크로 막대 구조체의 수직정렬)

  • Lee, Yuk-Kyoo;Jeon, Chan-Wook;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.459-460
    • /
    • 2008
  • Zinc oxide micro rods were fabricated using as chemical bath deposition ok photolithography. Vertically aligned Zinc Oxide rod array as grown by chemical bath deposition method on Zinc Oxide template layer. The ZnO template layer was deposited on glass and the pattering was made by standard photolithography technique. The selective growth of ZnO micro rods were achieved with the masked ZnO template layer substrate. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO template layer. The ZnO micro-rod array structure was implemented as a window layer in Cu(InGa)Se2 solar cell and its effect on photovoltaic efficiency was examined.

  • PDF

Electrical Characteristics of Bottom-Contact Organic Thin-Film-Transistors Inserting Adhesion Layer Fabricated by Vapor Deposition Polymerization and Ti Adhesion Metal Layer

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.958-961
    • /
    • 2007
  • The electrical characteristics of organic thin-filmtransistor (OTFTs) can be improved by inserting adhesion layer on gate dielectrics. Adhesion layer was used as polymeric adhesion layer deposited on inorganic gate insulators such as silicon dioxide $(SiO_2)$ and it was formed by vapor deposition polymerization (VDP) instead of spin-coating process. The OTFTs obtained the on/off ratio $of{\sim}10^4$, threshold voltage of 1.8V, subthreshold slop of 2.9 V/decade and field effect mobility about $0.01\;cm^2/Vs$.

  • PDF

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

Properties of HfO2 Insulating Film Using the ALD Method for Nonvolatile Memory Application (비휘발성 메모리 응용을 위한 ALD법을 이용한 HfO2 절연막의 특성)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1401-1405
    • /
    • 2010
  • We have successfully demonstrated of metal-insulator-semiconductor (MIS) capacitors with $HfO_2$/p-Si structures. The $HfO_2$ film was grown at $200^{\circ}C$ on H-terminated Si wafer by atomic layer deposition (ALD) system. TEMAHf and $H_2O$ were used as the hafnium and oxygen sources. A cycle of the deposition process consisted of 0.1 s of TEMAHf pulse, 10 s of $N_2$ purge, 0.1 s of $H_2O$ pulse, and 60 s of $N_2$ purge. The 5 nm thick $HfO_2$ layer prepared on Si substrate by ALD exhibited excellent electrical properties, including low leakage currents, no mobile charges, and a good interface with Si.

Recent Research Progress on the Atomic Layer Deposition of Noble Metal Catalysts for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 촉매 소재 개발을 위한 원자층증착법 연구 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.

Conformal $Al_2$O$_3$ Nanocoating of Semiconductor Nanowires by Atomic Layer Deposition

  • Hwang, Joo-Won;Min, Byung-Don;Kim, Sang-Sig
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.66-69
    • /
    • 2003
  • Various semiconductor nanowires such as GaN, GaP, InP, Si$_3$N$_4$, SiO$_2$/Si, and SiC were coated conformally with aluminum oxide (Al$_2$O$_3$) layers by atomic layer deposition (ALD) using trimethylaluminum (TMA) and distilled water ($H_2O$) at a temperature of 20$0^{\circ}C$. Transmission electron microscopy (TEM) revealed that A1203 cylindrical shells conformally coat the semiconductor nanowires. This study suggests that the ALD of $Al_2$O$_3$ on nanowires is a promising method for preparing cylindrical dielectric shells for coaxially gated nanowire field-effect transistors.

Al2O3 Nano-Coating by Atomic Layer Deposition

  • Min Byung-Don;Lee Jong-Soo;Kim Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.15-18
    • /
    • 2003
  • Aluminum oxide ($Al_2O_3$) materials were coated conformally on ZnO nanorods by atomic layer deposition (ALD). The ZnO nanorods were first synthesized on a Si(100) substrate from ball-milled ZnO powders by a thermal evaporation procedure. $Al_2O_3$ films were then deposited on these ZnO nanorods by ALD at a substrate temperature of $300^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_2O$). Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the deposited ZnO nanorods revealed that amorphous $Al_2O_3$ cylindrical shells surround the ZnO nanorods. These TEM images illustrate that ALD has an excellent capability to coat any shape of nanorods conformally.

Properties of $Al_2O_3$ Insulating Film Using the ALD Method for Nonvolatile Memory Application (비휘발성 메모리 응용을 위한 ALD법을 이용한 $Al_2O_3$ 절연막의 특성)

  • Jung, Soon-Won;Lee, Ki-Sik;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2420-2424
    • /
    • 2009
  • We have successfully demonstrated of metal-insulator-semiconductor (MIS) capacitors with $Al_2O_3/p-Si$ structures. The $Al_2O_3$ film was grown at $200^{\circ}C$ on H-terminated Si wafer by atomic layer deposition (ALD) system. Trimethylaluminum [$Al(CH_3)_3$, TMA] and $H_2O$ were used as the aluminum and oxygen sources. A cycle of the deposition process consisted of 0.1 s of TMA pulse, 10 s of $N_2$ purge, 0.1 s of $H_2O$ pulse, and 60 s of $N_2$ purge. The 5 nm thick $Al_2O_3$ layer prepared on Si substrate by ALD exhibited excellent electrical properties, including low leakage currents, no mobile charges, and a good interface with Si.

Microfabrication of Vertical Carbon Nanotube Field-Effect Transistors on an Anodized Aluminum Oxide Template Using Atomic Layer Deposition

  • Jung, Sunghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1169-1173
    • /
    • 2015
  • This paper presents vertical carbon nanotube (CNT) field effect transistors (FETs). For the first time, the author successfully fabricated vertical CNT-based FETs on an anodized aluminum oxide (AAO) template by using atomic layer deposition (ALD). Single walled CNTs were vertically grown and aligned with the vertical pores of an AAO template. By using ALD, a gate oxide material (Al2O3) and a gate metal (Au) were centrally located inside each pore, allowing the vertical CNTs grown in the pores to be individually gated. Characterizations of the gated/vertical CNTs were carried and the successful gate integration with the CNTs was confirmed.