Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.1.63

Recent Research Progress on the Atomic Layer Deposition of Noble Metal Catalysts for Polymer Electrolyte Membrane Fuel Cell  

Han, Jeong Hwan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.27, no.1, 2020 , pp. 63-71 More about this Journal
Abstract
It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.
Keywords
Polymer electrolyte membrane fuel cell; Atomic Layer Deposition; Noble metal catalyst; Catalytic activity; Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. J. Pyeon, C. J. Cho, S.-H. Baek, C.-Y. Kang, J.-S. Kim, D. S. Jeong and S. K. Kim: Nanotechnology, 26 (2015) 304003.   DOI
2 Y.-C. Hsueh, C.-C. Wang, C.-C. Kei, Y.-H. Lin, C. Liu and T.-P. Perng: J. Catal., 294 (2012) 63.   DOI
3 V. C. Anitha, R. Zazpe, M. Krbal, J. Yoo, H. Sopha, J. Prikryl, G. Cha, S. Slang, P. Schmuki and J. M. Macak: J. Catal., 365 (2018) 86.   DOI
4 W.-J. Lee, S. Bera, H.-C. Shin, W.-P. Hong, S.-J. Oh, Z. Wan and S.-H. Kwon: Adv. Mater. Interfaces, 6 (2019) 1901210.   DOI
5 C. Liu, C.-C. Wang, C.-C. Kei, Y.-C. Hsueh and T.-P. Perng: Small, 5 (2009) 1535.   DOI
6 J. J. Senkevich, F. Tang, D. Rogers, J. T. Drotar, C. Jezewski, W. A. Lanford, G.-C. Wang and T.-M. Lu: Chem. Vap. Deposition, 9 (2003) 258.   DOI
7 H. Feng, J. W. Elam, J. A. Libera, W. Setthapun and P. C. Stair: Chem. Mater., 22 (2010) 3133.   DOI
8 M. J. Weber, A. J. M. Mackus, M. A. Verheijen, V. Longo, A. A. Bol and W. M. M. Kessels: J. Phys. Chem. C, 118 (2014) 8702.   DOI
9 Y. Lei, B. Liu, J. Lu, R. J. Lobo-Lapidus, T. Wu, H. Feng, X. Xia, A. U. Mane, J. A. Libera, J. P. Greeley, J. T. Miller and J. W. Elam: Chem. Mater., 24 (2012) 3525.   DOI
10 K. Cao, Q. Zhu, B. Shan and R. Chen: Sci. Rep., 5 (2015) 8470.   DOI
11 A.-C. Johansson, J. V. Larsen, M. A. Verheijen, K. B. Haugshoj, H. F. Clausen, W. M. M. Kessels, L. H. Christensen and E. V. Thomsen: J. Catal., 311 (2014) 481.   DOI
12 A.-C. Johansson, R. B. Yang, K. B. Haugshoj, J. V. Larsen, L. H. Christensen and E. V. Thomsen: Int. J. Hydrogen Energy, 38 (2013) 11406.   DOI
13 A. Santasalo-Aarnio, E. Sairanen, R. M. Aran-Ais, M. C. Figueiredo, J. Hua, J. M. Feliu, J. Lehtonen, R. Karinen and T. Kallio: J. Catal., 309 (2014) 38.   DOI
14 L. Assaud, E. Monyoncho, K. Pitzschel, A. Allagui, M. Petit, M. Hanbücken, E. A. Baranova and L. Santinacci: Beilstein J. Nanotechnol., 5 (2014) 162.   DOI
15 A. J. M. Mackus, M. A. Verheijen, N. Leick, A. A. Bol and W. M. M. Kessels: Chem. Mater., 25 (2013) 1905.   DOI
16 H.-B.-R. Lee and S. F. Bent: Chem. Mater., 27 (2015) 6802.   DOI
17 Fuel cell, From Wikipedia, the free encyclopaedia. Available online at: http://en.wikipedia.org/wiki/Fuelcell.
18 S. Mekhilef, R. Saidur and A. Safari: Renew. Sustain. Energy Rev., 16 (2012) 981-989.   DOI
19 A. J. Stephen, N. V. Rees, I. Mikheenko and L. E. Macaskie: Front. Energy Res., 7 (2019) 1.   DOI
20 A. Kirubakaran, S. Jain and R. K. Nema: Renew. Sustain. Energy Rev., 13 (2009) 2430.   DOI
21 T. R. Ralph and M. P. Hogarth: Platinum Metals Rev., 46 (2002) 3.
22 N. Tian, B.-A. Lu, X.-D. Yang, R. Huang, Y.-X. Jiang, Z.-Y. Zhou and S.-G. Sun: Electrochem. Energy. Rev., 1 (2018) 54.   DOI
23 A. Esmaeilifar, S. Rowshanzamir, M. H. Eikani and E. Ghazanfari: Energy, 35 (2010) 3941.   DOI
24 S. Litster and G. McLean: J. Power Sources, 130 (2004) 61.   DOI
25 Y. Yuan, J. A. Smith, G. Goenaga, D.-J. Liu, Z. Luo and J. Liu: J. Power Sources, 196 (2011) 6160.   DOI
26 Z. Song, M. N. Banis, H. Liu, L. Zhang, Y. Zhao, J. Li, K. Doyle-Davis, R. Li, S. Knights, S. Ye, G. A. Botton, P. He and X. Sun: ACS Catal0., 9 (2019) 5365.   DOI
27 D. M. King, J. A. Spencer II, X. Liang, L. F. Hakim and A. W. Weimer: Surf. Coat. Technol., 201 (2007) 9163.   DOI
28 J. A. McCormick, B. L. Cloutier and A. W. Weimer: J. Vac. Sci. Technol. A, 25 (2007) 67.   DOI
29 S. W. Park, J. W. Kim, H. J. Choi and J. H. Shim: J. Vac. Sci. Technol. A, 32 (2014) 01A115.   DOI
30 T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen and M. Leskela: Chem. Mater., 15 (2003) 1924.   DOI
31 J. Hamalainen, F. Munnik, M. Ritala and M. Leskela: Chem. Mater., 20 (2008) 6840.   DOI
32 J. Lu, K.-B. Low, Y. Lei, J. A. Libera, A. Nicholls, P. C. Stair and J. W. Elam: Nat. Commun., 5 (2014) 3264   DOI
33 W.-J. Lee, Z. Wan, C.-M. Kim, I.-K. Oh, R. Harada, K. Suzuki, E.-A. Choi and S.-H. Kwon: Chem. Mater., 31 (2019) 5056.   DOI
34 C. Wang, L. Hu, K. Poeppelmeier, P. C Stair and L. Marks: Nanotechnology, 28 (2017) 185704.   DOI
35 A. J. M. Mackus, N. Leick, L. Baker and W. M. M. Kessels: Chem. Mater., 24 (2012) 1752.   DOI
36 C.-T. Hsieh, Y.-Y. Liu, D.-Y. Tzou and W.-Y. Chen: J. Phys. Chem. C, 116 (2012) 26735.   DOI
37 O. A. Petrii: J. Solid State Electrochem., 12 (2008) 609.   DOI
38 E. Rikkinen, A. Santasalo-Aarnio, S. Airaksinen, M. Borghei, V. Viitanen, J. Sainio, E. I. Kauppinen, T. Kallio and A. O. I. Krause: J. Phys. Chem. C, 115 (2011) 23067.   DOI
39 S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair and J. W. Elam: Nano Lett., 10 (2010) 3047.   DOI
40 J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer: Beilstein J. Nanotechnol., 5 (2014) 44.   DOI
41 C. Marichy, G. Ercolano, G. Caputo, M. G. Willinger, D. Jones, J. Rozière, N. Pinna and S. Cavaliere: J. Mater. Chem. A, 4 (2016) 969.   DOI
42 Z. Song, B. Wang, N. Cheng, L. Yang, D. Banham, R. Li, S. Ye and X. Sun: J. Mater. Chem. A, 5 (2017) 9760.   DOI