• Title/Summary/Keyword: laplace integral

Search Result 95, Processing Time 0.031 seconds

Some Integral Equalities Related to Laplace Transformable Function

  • Kwon, Byung-Moon;Kwon, Oh-Kyu;Lee, Myung-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.1-151
    • /
    • 2001
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of Laplace transformable function. Using the definition of Laplace transform, it is shown that time-domain integral equalities have to be satisfied by the function, and those can be applied to understanding of the fundamental limitations of the control system represented by the transfer function, which has been Laplace transform. In the unity-feedback control scheme, another integral equality is also derived on the output response of the system with open-loop poles and zeros located in the convergence region.

  • PDF

A Study on Integral Equalities Related to a Laplace Transformable Function and its Applications

  • Kwon, Byung-Moon;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of a Laplace transformable function. Using the definition of the Laplace transform, it shows that Laplace transformable functions have to satisfy the integral equalities in the time-domain, which can be applied to the understanding of the fundamental limitations on the control system represented by the transfer function. In the unity-feedback control scheme, another integral equality is derived on the output response of the system with open-loop poles located in the convergence region of the output function. From these integral equalities, two sufficient conditions related to undershoot and overshoot phenomena in the step response, respectively, are investigated.

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

A Boundary Integral Formulation for Vibration Problems of Plate using Laplace Transform (Laplace변환을 이용한 판 진동문제의 경계적분방정식 정식화)

  • 이성민;서일교;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.9-16
    • /
    • 1994
  • In this paper, a boundary integral equation for transient plate bending problem is proposed. Approach, using laplace transform is considered. The boundary integral equations with respect to deflection, normal slope, bending moment effective shear are presented and the effect of corner point is considered.

  • PDF

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

SOME CLASSES OF INTEGRAL EQUATIONS OF CONVOLUTIONS-PAIR GENERATED BY THE KONTOROVICH-LEBEDEV, LAPLACE AND FOURIER TRANSFORMS

  • Tuan, Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.485-494
    • /
    • 2021
  • In this article, we prove the existence of a solution to some classes of integral equations of generalized convolution type generated by the Kontorovich-Lebedev (K) transform, the Laplace (𝓛) transform and the Fourier (F) transform in some appropriate function spaces and represent it in a closed form.

CERTAIN INTEGRAL TRANSFORMS OF EXTENDED BESSEL-MAITLAND FUNCTION ASSOCIATED WITH BETA FUNCTION

  • N. U. Khan;M. Kamarujjama;Daud
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.335-348
    • /
    • 2024
  • This paper deals with a new extension of the generalized Bessel-Maitland function (EGBMF) associated with the beta function. We evaluated integral representations, recurrence relation and integral transforms such as Mellin transform, Laplace transform, Euler transform, K-transform and Whittaker transform. Furthermore, the Riemann-Liouville fractional integrals are also discussed.

Some Theorems Connecting the Unified Fractional Integral Operators and the Laplace Transform

  • Soni, R. C.;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.153-159
    • /
    • 2005
  • In the present paper, we obtain two Theorems connecting the unified fractional integral operators and the Laplace transform. Due to the presence of a general class of polynomials, the multivariable H-function and general functions ${\theta}$ and ${\phi}$ in the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials (which are special cases of a general class of polynomials) and special functions involving one or more variables (which are particular cases of the multivariable H-function) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. Thus the Theorems obtained by Srivastava et al. [9] follow as simple special cases of our findings.

  • PDF

SOME INTEGRAL TRANSFORMS INVOLVING EXTENDED GENERALIZED GAUSS HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Kachhia, Krunal B.;Prajapati, Jyotindra C.;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.779-790
    • /
    • 2016
  • Using the extended generalized integral transform given by Luo et al. [6], we introduce some new generalized integral transforms to investigate such their (potentially) useful properties as inversion formulas and Parseval-Goldstein type relations. Classical integral transforms including (for example) Laplace, Stieltjes, and Widder-Potential transforms are seen to follow as special cases of the newly-introduced integral transforms.