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ABSTRACT. In this article, a homotopy perturbation transform method (HPTM) and the Laplace
transform combined with Taylor expansion method are presented for solving Volterra integral
equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm
and makes the calculation much simpler while in the Laplace transform and Taylor expansion
method we first convert the integral equation to an algebraic equation using Laplace transform
then we find its numerical inversion by power series. The numerical solution obtained by the
proposed methods indicate that the approaches are easy computationally and its implementa-
tion very attractive. The methods are described and numerical examples are given to illustrate
its accuracy and stability.

1. INTRODUCTION

In recent years, many different methods have been used to approximate the solution of
Volterra integral equations of convolution kernel [1, 4, 18, 21]. Block-pulse functions (BPFs)
have been studied and applied for solving different problems [2, 17]. Integral equations have
many applications in various areas, including mathematical physics, electrochemistry, chem-
istry, semi-conductors, heat conduction, seismology, metallurgy, fluid flow, scattering theory,
chemical reaction and population dynamics [6, 9, 19]. Numerical methods are available for
approximating the Volterra integral equation and Abel integral equation. In particular, Yang
[20] proposed a method for the solution of integral equation using the Chebyshev polynomi-
als, Hamoud and Ghadle [5] used the reliable modified of Laplace Adomian decomposition
method to solve nonlinear interval Volterra-Fredholm integral equations. Huang [7] used the
Taylor expansion of unknown function and obtained an approximate solution. Khodabin [13]
numerically solved the stochastic Volterra integral equations using triangular functions and
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their operational matrix of integration. Yousefi [22] presented a numerical method for the Abel
integral equation by Legendre wavelets. Kamyad [11] proposed a new algorithm based on the
calculus of variations and discretisation method. While the homotopy perturbation method was
proposed first by J. He in 1998 and was further developed and improved by himself in 2000.
[7, 8]. The HPTM has been successfully applied by many researchers for solving differential
equations and integral equation [3, 16]. Recently, many authors have paid attention to study
the solutions of linear and nonlinear integral equation and differential equation by using vari-
ous methods with combined the Laplace transform. Among these are homotopy perturbation
transform method [14, 15] and the Laplace decomposition methods [10, 12]. In this article we
consider Volterra integral equation with a convolution kernel given by

u(x) = f(x) +

∫ x

0
k(x− t)u(t)dt, 0 ≤ x ≤ T, (1.1)

where the source function f and the kernel function k are given, and u(x) is the unknown
function. The article is organized as follows: In Section 2, we present the introduction of
Laplace transform and its properties. In Section 3, we describe the solution of Eq. (1.1) by
using Laplace transform and Taylor expansion method. Section 4 is devoted to the solution of
Eq. (1.1) by using the (HPTM) method. In Section 5, we report our numerical findings and
demonstrate the accuracy of the proposed methods by considering numerical examples. Sec-
tion 6 ends this article with a brief conclusion.

2. PRELIMINARIES

We begin our article by giving the definition of Laplace transform and its properties [21],
the convolution theorem and the Volterra integral equations which will be used in this article.

Definition 2.1. The Laplace transform of a function f(x) which is defined for all x ≥ 0, is :

£[f(x)] = F (s) =

∫ +∞

0
e−sxf(x)dx, (2.1)

for all values of s for which the improper integral converges. The Laplace transform has
several properties, as explained below:
1) Linearity Property

£[af(x) + bg(x)] = a£[f(x)] + b£[g(x)], (2.2)

where a, b are constants. 2) The Convolution Theorem
The Laplace transforms for the functions f(x) and g(x) be given by

£[f(x)] = F (s), £[g(x)] = G(s).

Then the Laplace convolution product of these two functions is defined by

£

[∫ x

0
f(x− t)g(t)dt

]
= F (s)G(s),
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Theorem 2.2. [21] Suppose F (s) is the Laplace transform of f(x), which has a Maclaurin
power series expansion in the form

f(x) =

∞∑
i=0

ai
xi

i!
.

Applying the Laplace transform, it is possible to be written formally

F (S) =
∞∑
i=0

ai
si+1

.

3. SOLUTION OF VOLTERRA INTEGRAL EQUATION BY USING LAPLACE TRANSFORM AND
TAYLOR SERIES

First, the Laplace transform is applied to both sides of Eq. (1.1)

£[u(x)] = £[f(x)] +£[

∫ x

0
k(x− t)u(t)dt].

By using the Laplace transform property (2) the equation below can be obtained

£[u] = £[f ] +£[k]£[u].

Thus, the given equation is equivalent to

£[u] =
£[f ]

1−£[k]
= F (s).

Applying Theorem (2.2), F (s) can be expanded as an absolutely convergent series, which is
given by

£[u] =
c1
s
+
c2
s2

+
c3
s3

+ ...

where c1, c2, c3, ... are the known constants. Taking the inverse Laplace transform on both
sides of the above equation, we can obtain

u(x) = c1 +
c2

Γ(2)
x+

c3
Γ(3)

x2 +
c4

Γ(4)
x3 + ...

which is uniformly convergent to the exact solution. So we approximate the solution u(x) by
using

u(x) = c1 +
c2

Γ(2)
x+

c3
Γ(3)

x2 + ...+
cn

Γ(n)
xn−1,

with the error function en = u(x)− un(x).
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4. SOLUTION OF VOLTERRA INTEGRAL EQUATION BY USING HOMOTOPY PERTURPATION
TRANSFORM METHOD :

We solved spatial case from Eq. (1.1) namely singular integral equation of Abel type, so
we consider the following Abel’s integral equation of second kind as

u(x) = f(x) +

∫ x

0

u(t)√
x− t

dt, 0 ≤ x ≤ 1, (4.1)

Applying the Laplace transform on both sides in Eq. (4.1), we get

£[u(x)] = £[f(x)] +£[

∫ x

0

u(t)√
x− t

dt], (4.2)

By using the Laplace transform convolution property, Eq. (4.2) becomes

£[u(x)] = £[f(x)] +

√
π

s
£[u(x)], (4.3)

Applying the inverse Laplace transform on both sides in Eq. (4.3), we get

u(x) = f(x) +£−1

{√
π

s
£[u(x)]

}
.

Abel integral Eq. (4.1) has the solution in the following series form as

ψ(x) =
∞∑
n=0

pnψn(x), (4.4)

where ψn(x), n = 0, 1, 2, 3, ... are functions to be determined. We use the following iterative
scheme to evaluate ψn(x).
By using HPTM to solve Eq. (4.1), we consider the following convex homotopy

∞∑
n=0

pnψn(x) = f(x) + p

{
£−1

(√
π

s
£

( ∞∑
n=0

pnψn(x)

))}
(4.5)

This is coupling of the Laplace transform and homotopy perturbation Method. Now, equat-
ing the coefficient of corresponding power of p on both sides, the following approximations
are obtained as:

p0 : ψ0(x) = f(x), pn : ψn(x) = £−1

{√
π

s
£ (ψn−1(x))

}
n = 1, 2, 3, ... (4.6)

Hence the solution of the Eq. (4.1) is given as

u(x) = lim
p→1

ψ(x) =
∞∑
n=0

ψn(x). (4.7)

It is worth to note that the major advantage of homotopy perturbation transform method is
that the perturbation equation can be freely constructed in many ways (therefore problem is
dependent) by homotopy in topology and the initial approximation can also be freely selected.
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It is to be noted that the rate of convergence of the series representing the solution in Eq. (4.7)
depends upon the initial choices ψ0(x)

5. NUMERICAL EXAMPLES:

In this section we shall demonstrate the effectiveness of the proposed methods by several
examples. All the results are calculated using the symbolic calculus software MATLAB.

Example 1. Consider the Abel integral equation of second kind

u(x) = 2
√
x−

∫ x

0

u(t)√
x− t

dt, 0 ≤ x ≤ 1 (5.1)

with the exact solution u(x) = 1 − eπxerfc(πx), where the complimentary error function
erfc(πx) defined as

erfc(πx) =
2√
π

∫ ∞

x
e−t2dt.

a) Applying Laplace transform and Taylor series

Using the Laplace transform and convolution properties, we get

£[u] = £[2
√
x]−£[x−

1
2 ]£[u].

Hence,
£[2

√
x]

1 +£[x−
1
2 ]

= £[u],

Or equivalently,

F (s) =

√
π

s(
√
s+ π)

= £[u].

The left hand side of F (s) in the power of 1
s expanded as in

F (s) = π
1
2 (
1

s
)
3
2 − π(

1

s
)2 + π

3
2 (
1

s
)
5
2 − π2(

1

s
)3

+π
5
2 (
1

s
)
7
2 − π3(

1

s
)4 + π

7
2 (
1

s
)
9
2 − π4(

1

s
)5... (5.2)

Now applying the inverse Laplace transform to (5.2), we obtain

u(x) = 2x
1
2 − πx+

4π

3
x

3
2 − π2

2
x2 +

8π2

15
x

5
2

−π
3

6
x3 +

16π3

105
x

7
2 − π4

24
x4... (5.3)

b) Applying (HPTM)
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Applying the aforesaid homotopy perturbation transform method, we get

∞∑
n=0

pnψn(x) = 2
√
x− p

{
£−1

(√
π

s
£

( ∞∑
n=0

pnψn(x)

))}
(5.4)

The various ψn(x), n = 0, 1, 2, 3, ... are given as

ψ0(x) = 2
√
x, ψ1(x) = −πx,

ψ2(x) =
4π

3
x

3
2 , ψ3(x) = −π

2

2
x2, (5.5)

ψ4(x) =
8π2

15
x

5
2 , ...

Hence the solution of the given problem Eq. (5.1) is given as

u(x) =

∞∑
n=0

ψn(x)

= 2
√
x− πx+

4π

3
x

3
2 − π2

2
x2 +

8π2

15
x

5
2 − π3

6
x3 + ...

=

∞∑
n=1

(−1)n−1(πx)
n
2

Γ(1 + n
2 )

= 1− E 1
2
(−

√
πx) (5.6)

= 1− eπxerfc(
√
πx).

This is the exact solution of the Abel integral Eq. (5.1)
Example 2. Consider the singular Volterra integral equation

u(x) = x2 +
16

15
x

5
2 −

∫ x

0

u(t)√
x− t

dt, 0 ≤ x ≤ 1, (5.7)

with exact solution u(x) = x2. A homotopy perturbation transform method can be constructed
as follows

∞∑
n=0

pnψn(x) = x2 +
16

15
x

5
2 − p

{
£−1

(√
π

s
£

( ∞∑
n=0

pnψn(x)

))}
(5.8)

giving various ψn(x), n = 0, 1, 2, 3, ... as follows

ψ0(x) = x2 +
16

15
x

5
2 , ψ1(x) = −16

15
x

5
2 − π

3
x3,

ψ2(x) =
π

3
x3 +

32π

105
x

7
2 , ψ3(x) = −π

2

12
x4 − 32π

105
x

7
2 , ... (5.9)

ψ31(x) = − 524288π15x
35
2

221643095476699771875
− π16

3201186852864000
x18.
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Hence the solution of the Eq. (5.7) is given as

u(x) = limψ(x) =

∞∑
i=0

ψn(x) =

n∑
i=0

ψn(x) +O(x3+
n
2 ) → x2 as n→ ∞. (5.10)

TABLE 1. Comparison between exact and approximate solution for Example 2.

x uExact(x) uAppr.(x) E31(u)
0.2 0.04 0.039999999999999999 7.37271×10−21

0.4 0.16 0.159999999999998067 1.93271×10−15

0.6 0.36 0.359999999997143663 2.85634×10−12

0.8 0.64 0.639999999493351566 5.06648×10−10

1.0 1.00 0.999999971875362176 2.81246×10−8

FIGURE 1. Comparison of approximate and exact solutions for Example 2.

Fig. 1 shows the comperison between the exact solution and the approximate solution ob-
tained by the proposed method. It is seen from Fig. 1 that the solution obtained by the proposed
method nearly identical to the exact solution. The accuracy of the result can be improved by in-
troducing more terms of the approximate solutions. The HPTM solution is compared with the
exact solution of the Abel integral equation at the different value of x in Table 1. for Example 2.

Example 3. Consider the Volterra integral with a convolution kernel

u(x)− sinx = −
∫ x

0
cos(x− t)u(t)dt. (5.11)
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which has u(x) = 2
√
3

3 sin(
√
3x
2 )e

−x
2 as exact solution. Taking the Laplace transforms on both

sides of (5.11) we get

£[u(x)]−£[sinx] = −£

[∫ x

0
cos(x− t)u(t)dt

]
. (5.12)

Applying the Laplace convolution product of two function the above Eq. becomes

£[u(x)]−£[sinx] = −£[cos(x)]£[u(x)], (5.13)

which provides

£[u(x)] =
£[sinx]

1 +£[cosx]
=

1

s2 + s+ 1
. (5.14)

Now expanding in power of 1
s the right hand side of Eq.(5.14) we obtain

£[u] =
1

s2
− 1

s3
+

1

s5
− 1

s6
+

1

s8
− 1

s9
+

1

s11
...

By taking the inverse Laplace transform to the above equation, we obtain

u(x) = x− x2

2
+
x4

4!
− x5

5!
+
x7

7!
− x8

8!
+
x10

10!
· · · . (5.15)

which is convergent to the exact solution

Example 4. Consider the singular Volterra integral equation

u(x) =
√
x+

πx

2
+

∫ x

0

u(t)√
x− t

dt, 0 ≤ x ≤ 1 (5.16)

which has u(x) =
√
x as the exact solution.

A homotopy perturbation transform method can be constructed as follows (from Eq. (5.16):
∞∑
n=0

pnψn(x) =
√
x+

πx

2
− p

{
£−1

(√
π

s
£

( ∞∑
n=0

pnψn(x)

))}
(5.17)

The various iterates ψn(x), n = 0, 1, 2, 3, ... are given as:

ψ0(x) =
√
x+

πx

2
,

ψ1(x) =− πx

2
− 2

3
πx

3
2 ,

ψ2(x) =
2

3
πx

3
2 +

1

4
π2x2,

ψ3(x) =− 1

4
π2x2 − 4

15
π2x

5
2 , ...

ψ31(x) =− 65536π16x
33
2

6332659870762850625
− π16

39916800
x16 (5.18)
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Hence, the solution of the Eq.(5.16) is given as

u(x) = lim
p

→ 1ψ(x) =

∞∑
i=0

ψn(x) →
√
x as n→ ∞. (5.19)

TABLE 2. Comparison between exact and approximate solutions for example 4

x uExact(x) uAppr.(x) E31(u)
0.2 0.447213595499957939 0.447213595499957936 2.73078×10−18

0.4 0.632455532033675866 0.632455532033422772 2.53094×10−13

0.6 0.774596669241483377 0.774596669037878881 2.03604×10−10

0.8 0.894427190999915856 0.894427167542697200 2.34572×10−8

1.0 1.0 0.999999068266455868 9.31734×10−7

FIGURE 2. Comparison of approximate and exact solutions for Example 4

Fig. 2 shows the comperison between the exact solution and the approximate solution ob-
tained by the HPTM. It is seen from Fig. 2. the solution obtained by the proposed method
nearly identical to the exat solution. The above result is in complete agreement with Pandey et
al.[21]. In this example, the simplicity and accuracy of the proposed method is illustrated by
computing the absolute error E31(x) = uexact(x)− uappr.(x) for the Example 4.The accuracy
of the result can be improved by introducing more terms of the approximate solutions. In Table
2. HPTM solution are compared with the exact solution of the Abel integral Eq. (5.16). There
is good agreement between exact and approximate solution obtained by proposed method. The
table also shows the absolute error between the exact and approximate solution.

Example 5. Consider the singular Volterra integral equation

u(x) = x+
4

3
x

3
2 −

∫ x

0

u(t)√
x− t

dt, 0 ≤ x ≤ 1. (5.20)
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which has x as the exact solution.
A homotopy perturbation transform method can be constructed as

∞∑
n=0

pnψn(x) = x+
4

3
x

3
2 − p

{
£−1

(√
π

s
£

( ∞∑
n=0

pnψn(x))

))}
(5.21)

The various iterates ψn(x), n = 0, 1, 2, 3, ... are given as:

ψ0(x) = x+
4

3
x

3
2 , ψ1(x) = −4

3
x

3
2 − π

2
x2,

ψ2(x) =
π

2
x2 +

8π

15
x

5
2 , , ψ3(x) = −8π

15
x

5
2 − π2

6
x3, ... (5.22)

ψ31(x) = − 131072π15

6332659870762850625
x

33
2 − π16

355687428096000
x17

Hence, from Eq. (4.7), the solution is

u(x) = limψ(x) =
∞∑
i=0

ψn(x) =
n∑

i=0

ψn(x) +O(x2+
n
2 ) → x as n→ ∞ (5.23)

TABLE 3. Comparison between exact and approximate solutions for Example 5.

x uExact(x) uAppr.(x) E31(u)

0.2 0.2 0.199999999999999999 3.31772×10−19

0.4 0.4 0.399999999999956514 4.34860×10−14

0.6 0.6 0.599999999957154945 4.28451×10−11

0.8 0.8 0.799999994300205120 5.69979×10−9

1.0 1.0 0.999999746878259586 2.53122×10−7

FIGURE 3. Comparison of approximate and exact solutions for Example 5.
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6. CONCLUSION

In this article, we applied Laplace transform with Taylor Series and homotopy perturbation
transform methods to solve the Volterra integral equation with a convolution kernel. From the
above examples, it is obvious that our proposed methods give the same approximate solutions,
and they are employed to obtain quick and accurate solution of the integral equation of a con-
volution type. The methods require much less computational work compared with traditional
methods. We observed that our developed mechanism is straight forward and easy to apply.
The proposed approaches can be further implemented to solve other linear and nonlinear prob-
lems arising in science and engineering. Numerical results show that the methods are working
well and the accuracy is comparable with exact solutions.
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