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Abstract. The anisotropic-diffusion convection equation with exponentially variable co-

efficients is discussed in this paper. Numerical solutions are found using a combined

Laplace transform and boundary element method. The variable coefficients equation is

usually used to model problems of functionally graded media. First the variable coeffi-

cients equation is transformed to a constant coefficients equation. The constant coefficients

equation is then Laplace-transformed so that the time variable vanishes. The Laplace-

transformed equation is consequently written as a boundary integral equation which in-

volves a time-free fundamental solution. The boundary integral equation is therefore

employed to find numerical solutions using a standard boundary element method. Finally

the results obtained are inversely transformed numerically using the Stehfest formula to

get solutions in the time variable. The combined Laplace transform and boundary element

method are easy to implement and accurate for solving unsteady problems of anisotropic

exponentially graded media governed by the diffusion convection equation.

1. Introduction

The unsteady anisotropic-diffusion convection equation of variable coefficients

∂

∂xi

[
dij (x)

∂c (x, t)

∂xj

]
− ∂

∂xi
[vi (x) c (x, t)] = α (x)

∂c (x, t)

∂t
(1.1)

will be considered. We assume that the flow is compressible, that is

∂vi (x)

∂xi
̸= 0.
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Equation (1.1) is used to model unsteady diffusion convection process in anisotropic
and inhomogeneous (functionally graded) materials. Among the physical phenom-
ena of applications include pollutant transport and heat transfer. In (1.1) the
coefficients dij (x) , vi (x) , α (x) may represent respectively the diffusivity or con-
ductivity, the velocity of flow existing in the system and the change rate of the
unknown variable c (x, t).

Nowadays functionally graded materials (FGMs) have become an important
issue, and numerous studies on this issue for a variety of applications have been
reported. Authors commonly define an FGM as an inhomogeneous material having
a specific property such as thermal conductivity, hardness, toughness, ductility,
corrosion resistance, etc. that changes spatially in a continuous fashion. Therefore
equation (1.1) is relevant for FGMs.

In the last decade investigations on the diffusion-convection equation had been
done for finding its numerical solutions. The investigations can be classified accord-
ing to the anisotropy and inhomogeneity of the media under consideration. For ex-
ample, Wu et al. [38], Hernandez-Martinez et al. [15], Wang et al. [37] and Fendoğlu
et al. [9] had been working on problems of isotropic diffusion and homogeneous me-
dia, Yoshida and Nagaoka [39], Meenal and Eldho [22], Azis [5] (for Helmholtz type
governing equation) studied problems of anisotropic diffusion but homogeneous me-
dia. Rap et al. [26], Ravnik and ÂŠkerget [28, 29], Li et al. [21] and Pettres and
Lacerda [25] considered the case of isotropic diffusion and variable coefficients (inho-
mogeneous media). Recently Azis and co-workers had been working on steady state
problems of anisotropic inhomogeneous media for several types of governing equa-
tions, for examples [7,36] for the modified Helmholtz equation, [6,13,17,20,27,30,33]
for the diffusion convection reaction equation, [10, 16, 19, 32] for the Laplace type
equation, [4, 12,18,23,24] for the Helmholtz equation.

Equation (1.1) applies for unsteady problems of anisotropic and inhomoge-
neous cases, therefore provides a wider class of problems. It covers problems of
isotropic and homogeneous media as special cases which occur respectively when
d11 = d22, d12 = 0 and the coefficients dij , vi and α are constant.

Zoppou and Knight [40] had been working on finding the analytical solution to
the unsteady orthotropic diffusion-convection equation with spatially variable co-
efficients. The equation considered is almost similar to equation (1.1) but with
limitation d11 ̸= d22, d12 = 0. This paper is intended to extend the recently
published works on anisotropic diffusion convection equation with variable coef-
ficients [2, 8, 11,31,35] from the steady state to unsteady state equation.

Referred to the Cartesian frame Ox1x2 we will consider initial boundary value
problems governed by (1.1) where x = (x1, x2). The coefficient [dij ] (i, j = 1, 2) is a
real positive definite symmetrical matrix. Also, in (1.1) the summation convention
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for repeated indices holds, so that explicitly (1.1) can be respectively written as

∂

∂x1

(
d11

∂c

∂x1

)
+

∂

∂x1

(
d12

∂c

∂x2

)
+

∂

∂x2

(
d12

∂c

∂x1

)
+

∂

∂x2

(
d22

∂c

∂x2

)
−∂ (v1c)

∂x1
− ∂ (v2c)

∂x2
= α

∂c

∂t
.

2. The Initial Boundary Value Problem

Given the coefficients dij (x) , vi (x) , α (x), the solution c (x, t) and its deriva-
tives for (1.1) are sought which are valid for time interval t ≥ 0 and in a two-
dimensional region Ω with boundary ∂Ω which consists of a finite number of piece-
wise smooth curves. On ∂Ω1 the dependent variable c (x, t) is specified, and

(2.1) P (x, t) = dij (x)
∂c (x, t)

∂xi
nj

is specified on ∂Ω2 where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n =(n1, n2) denotes the outward
pointing normal to ∂Ω. The initial condition is taken to be

(2.2) c (x, 0) = 0

The method of solution will be to transform the variable coefficient equation (1.1)
to a constant coefficient equation, and then taking a Laplace transform of the con-
stant coefficient equation, and to obtain a boundary integral equation in the Laplace
transform variable s. The boundary integral equation is then solved using a stan-
dard boundary element method (BEM). An inverse Laplace transform is taken to
obtain the solution c and its derivatives for all (x, t) in the domain. The inverse
Laplace transform is implemented numerically using the Stehfest formula. The
analysis is specially relevant to an anisotropic medium but it equally applies to
isotropic media. For isotropy, the coefficients in (1.1) take the form d11 = d22 and
d12 = 0 and use of these equations in the following analysis immediately yields the
corresponding results for an isotropic medium.

3. The Boundary Integral Equation

We restrict the coefficients dij , vi, α to be of the form

dij (x) = d̂ij g(x)(3.1)

vi (x) = v̂i g(x)(3.2)

α (x) = α̂ g(x)(3.3)

where g(x) is a differentiable function and d̂ij , v̂i, α̂ are constants. Further we
assume that the coefficients dij (x), vi (x) and α (x) are exponentially graded by
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taking g(x) as an exponential function

(3.4) g(x) = [exp (β0 + βixi)]
2

where β0 and βi are constants. Therefore if

(3.5) d̂ijβiβj + v̂iβi − λ = 0

where λ is a constant then (3.4) satisfies

(3.6) d̂ij
∂2g1/2

∂xi∂xj
+ v̂i

∂g1/2

∂xi
− λg1/2 = 0.

Substitution of (3.1), (3.2) and (3.3) into (1.1) gives

(3.7) d̂ij
∂

∂xi

(
g
∂c

∂xj

)
− v̂i

∂ (gc)

∂xi
= α̂g

∂c

∂t

Assume

(3.8) c (x, t) = g−1/2 (x)ψ (x, t)

therefore substitution of (3.1) and (3.8) into (2.1) gives

(3.9) P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t)

where

Pg (x, t) = d̂ij
∂g1/2 (x)

∂xj
ni Pψ (x, t) = d̂ij

∂ψ (x, t)

∂xj
ni

And equation (3.7) can be written as

d̂ij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
− v̂i

∂
(
g1/2ψ

)
∂xi

= α̂g
∂
(
g−1/2ψ

)
∂t

d̂ij
∂

∂xi

[
g

(
g−1/2 ∂ψ

∂xj
+ ψ

∂g−1/2

∂xj

)]
−v̂i

(
g1/2

∂ψ

∂xi
+ ψ

∂g1/2

∂xi

)
= α̂g

(
g−1/2 ∂ψ

∂t

)

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
−v̂i

(
g1/2

∂ψ

∂xi
+ ψ

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t
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Use of the identity
∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi
implies

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ

∂g1/2

∂xj

)
− v̂i

(
g1/2

∂ψ

∂xi
+ ψ

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xj

)
− ψ

(
d̂ij

∂2g1/2

∂xi∂xj
+ v̂i

∂g1/2

∂xi

)
+

(
d̂ij

∂ψ

∂xj

∂g1/2

∂xi
− d̂ij

∂ψ

∂xj

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t

Equation (3.6) then implies

(3.10) d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
− λψ = α̂

∂ψ

∂t

which is a constant coefficients equation. Taking a Laplace transform of (3.8), (3.9),
(3.10) with respect to time t, and applying the initial condition (2.2) we obtain

(3.11) ψ∗ (x, s) = g1/2 (x) c∗ (x, s)

(3.12) Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x)

(3.13) d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
− (λ+ sα̂)ψ∗ = 0

where s is the variable of the Laplace-transformed domain and the notation () ∗

represents the quantity in the Laplace transform framework.
By using Gauss divergence theorem, equation (3.13) can be transformed into a

boundary integral equation

η (ξ) ψ∗ (ξ, s) =

∫
∂Ω

{Pψ∗ (x, s) Φ (x, ξ)− [Pv (x) Φ (x, ξ)

+Γ (x, ξ)]ψ∗ (x, s)} dS (x)(3.14)

where
Pv (x) = v̂i ni (x)

For 2-D problems the fundamental solutions Φ(x, ξ) and Γ(x, ξ) are given as (see
for example [3] for the derivation of the fundamental solutions)

Φ (x, ξ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0

(
µ̇Ṙ
)

Γ (x, ξ) = d̂ij
∂Φ (x, ξ)

∂xj
ni
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where

µ̇ =

√
(v̇/2D)

2
+ [(λ+ sα̂) /D]

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2r + ρ2i

)]
/2

Ṙ = ẋ− ξ̇

ẋ = (x1 + ρrx2, ρix2)

ξ̇ = (ξ1 + ρrξ2, ρiξ2)

v̇ = (v̂1 + ρrv̂2, ρiv̂2)

Ṙ =

√
(x1 + ρrx2 − ξ1 − ρrξ2)

2
+ (ρix2 − ρiξ2)

2

v̇ =

√
(v̂1 + ρrv̂2)

2
+ (ρiv̂2)

2

where ρr and ρi are respectively the real and the positive imaginary parts of the
complex root ρ of the quadratic equation

d̂11 + 2d̂12ρ+ d̂22ρ
2 = 0

and K0 is the second kind of the modified Bessel function. Use of (3.11) and (3.12)
in (3.14) yields

(3.15) ηg1/2c∗ =

∫
∂Ω

{(
g−1/2Φ

)
P ∗ +

[(
Pg − Pvg

1/2
)
Φ− g1/2Γ

]
c∗
}
dS

Equation (3.15) provides a boundary integral equation for determining the numer-
ical solutions of c∗ and its derivatives ∂c∗/∂x1 and ∂c∗/∂x2 at all points of Ω.

Knowing the solutions c∗ (x, s) and its derivatives ∂c∗/∂x1 and ∂c∗/∂x2 which
are obtained from (3.15), the numerical Laplace transform inversion technique using
the Stehfest formula is then employed to find the values of c (x, t) and its derivatives
∂c/∂x1 and ∂c/∂x2. The Stehfest formula (see [34]) is

c (x, t) ≃ ln 2

t

N∑
m=1

Vmc
∗ (x, sm)

∂c (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x1
(3.16)

∂c (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x2
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Table 1: Values of Vm of the Stehfest formula for N = 4, 6, 8, 10
Vm N = 4 N = 6 N = 8 N = 10

V1 −2 1 −1/3 1/12

V2 26 −49 145/3 −385/12

V3 −48 366 −906 1279

V4 24 −858 16394/3 −46871/3

V5 810 −43130/3 505465/6

V6 −270 18730 −236957.5

V7 −35840/3 1127735/3

V8 8960/3 −1020215/3

V9 164062.5

V10 −32812.5

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script has been developed to calculate the values of the coefficients Vm,m =
1, 2, . . . , N for any number N . Table (1) shows the values of Vm for N = 4, 6, 8, 10.

4. Numerical Results

In order to justify the analysis derived in the previous sections, we will consider
several problems either as test examples of analytical solutions or problems without
simple analytical solutions.

We assume each problem belongs to a system which is valid in spatial and time
domains and governed by equation (1.1) and satisfying the initial condition (2.2) and
some boundary conditions as defined in Section . The characteristics of the system
which are represented by the coefficients dij (x) , vi (x) , α (x) in equation (1.1) are
assumed to be of the form (3.1), (3.2) and (3.3) in which g(x) is an exponential
function of the form (3.4).

Standard BEM with constant elements is employed to obtain numerical results.
And the value of N in (3.16) for the Stehfest formula is chosen to be N = 10. We
try to increase the value of N from N = 6 to N = 12 and obtain the optimized
solution when using N = 10. Increasing N to N = 12 gives less accurate solutions.
According to Hassanzadeh and Pooladi-Darvish [14] these worse results are induced
by round-off errors. For a simplicity, a unit square (depicted in Figure 1) will
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be taken as the geometrical domain for all problems. A number of 320 boundary
elements of equal length, namely 80 elements on each side of the unit square, are
used. For the numerical integration, we use the 10-nodal-point Bode quadrature
of error of order O(h11) where 9h is equal to the length of the boundary element
(see [1]). This will guarantee the convergence of the solution as the number of
boundary elements is, to some extent, increased. A FORTRAN script is developed
to compute the solutions and a specific FORTRAN command is imposed to calculate
the elapsed CPU time for obtaining the results.

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Figure 1: The domain Ω

4.1. Test problems

Other aspects that will be justified are the accuracy and consistency (between
the scattering and flow) of the numerical solutions. The analytical solutions are
assumed to take a separable variables form

c (x, t) = g−1/2 (x)h (x) f (t)

where

h (x) = exp [−0.5 + 0.1x1 + 0.4x2]

The function g1/2 (x) is

g1/2 (x) = exp (−0.25x1 − 0.15x2)

and depicted in Figure 2. We will consider three forms of time variation functions
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f (t) of time domain t = [0 : 5] which are

f (t) = 1− exp (−1.75t)

f (t) = 0.15t

f (t) = 0.12t (5− t)

We take mutual coefficients d̂ij and v̂i for the problems

d̂ij =

[
1 0.25

0.25 0.75

]
v̂i = (0.1, 0.2)

so that from (3.5) we have
λ = 0.043125

For h (x) to be a solution to (3.13), the value of α̂ has to be

α̂ = 0.016875/s

We also take a set of boundary conditions (see Figure 1)

P is given on side AB
c is given on side BC
P is given on side CD
P is given on side AD

Problem 1: First, we suppose that the time variation function is

f (t) = 1− exp (−1.75t)

Function f (t) is depicted in Figure 3. Figure 4 shows the accuracy of the BEM
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Figure 3: Function f (t) for Problem 1

solutions. The errors occur in the fourth decimal place for the c and the derivatives
∂c/∂x1 and ∂c/∂x2 solutions. Figure 5 shows the consistency between the scattering
and the flow solutions which verifies that the solutions for the derivatives had also
been computed correctly. Figure 6 shows that the solution c changes with time t in
a similar way the function f (t) = 1 − exp (−1.75t) does (see Figure 3) and tends
to approach a steady state solution as the time goes to infinity, as expected. The
elapsed CPU time for the computation of the numerical solutions at 19× 19 points
inside the space domain which are

(x1, x2) = {0.05, 0.1, 0.15, . . . , 0.9, 0.95} × {0.05, 0.1, 0.15, . . . , 0.9, 0.95}

and 11 time-steps which are

t = 0.05, 0.5, 1, 1.5, . . . , 3.5, 4, 4.5, 5

is 7883.234375 seconds.

Problem 2: Next, we suppose that the time variation function is (see Figure 7)

f (t) = 0.15t

Figure 8 shows the accuracy of the BEM solutions. The errors occur in the fourth
decimal place for the c and the derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure
9 shows the consistency between the scattering and the flow solutions. Figure 10
shows that the solution c changes with time t in a manner which is almost similar
to as the function f (t) = 0.15t does (see Figure 7), as expected. The elapsed CPU
time for the computation of the numerical solutions at 19×19 spatial positions and
11 time steps from t = 0.0005 to t = 5 is 7912.4375 seconds.
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Figure 4: The errors of solutions c (top), ∂c/∂x1 (center), ∂c/∂x2 (bottom)
at t = 2.5 for Problem 1
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Figure 5: Solutions c and (∂c/∂x1, ∂c/∂x2) at t = 2.5 for Problem 1
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Problem 3: Now, we suppose that the time variation function is (see Figure 11)

f (t) = 0.12t (5− t)

Figure 12 shows the accuracy of the BEM solutions. The errors occur in the fourth
decimal place for the c and the derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure
13 shows the consistency between the scattering and the flow solutions which again
verifies that the solutions for the derivatives had also been computed correctly. Fig-
ure 14 shows that the solution c changes with time t in a similar way the function
f (t) = 0.12t (5− t) does. The elapsed CPU time for the computation of the nu-
merical solutions at 19× 19 spatial positions and 11 time steps from t = 0.0005 to
t = 5 is 6800 seconds.

4.2. Examples without analytical solutions

Furthermore, we will justify the numerical solutions and show the impact of
the anisotropy and the inhomogeneity of the material under consideration on the
solutions. We choose

v̂i = (0.1, 0.2) α̂ = 1

Problem 4: For this problem the medium is supposed to be inhomogeneous or
homogeneous, anisotropic or isotropic with grading function g(x), constant coeffi-

cients d̂ij and corresponding λ satisfying (3.5) and (3.6) as respectively follows:
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Figure 8: The errors of solutions c (top), ∂c/∂x1 (center), ∂c/∂x2 (bottom)
at t = 2.5 for Problem 2
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• inhomogeneous and anisotropic case

g1/2(x) = exp (−0.25x1 − 0.15x2)

d̂ij =

[
1 0.25

0.25 0.75

]
λ = 0.043125

• inhomogeneous and isotropic case

g1/2(x) = exp (−0.25x1 − 0.15x2)

d̂ij =

[
1 0
0 1

]
λ = 0.085

• homogeneous and isotropic case

g1/2(x) = 1

d̂ij =

[
1 0
0 1

]
λ = 0
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Figure 12: The errors of solutions c (top), ∂c/∂x1 (center), ∂c/∂x2 (bottom)
at t = 2.5 for Problem 3



574 Mohammad Ivan Azis

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x2

x1

Figure 13: Solutions c and (∂c/∂x1, ∂c/∂x2) at t = 2.5 for Problem 3
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• homogeneous and anisotropic case

g1/2(x) = 1

d̂ij =

[
1 0.25

0.25 0.75

]
λ = 0

The boundary conditions are that (see Figure 1)

P = 0 on side AB
c = 0 on side BC
P = 0 on side CD
P = 1 on side AD

There is no simple analytical solution for the problem. In fact the system is geo-
metrically symmetric about the axis x2 = 0.5. And this had been justified by the
results in Figure 15 in which it is observed that anisotropy and inhomogeneity give
impact to the values of solution c for being asymmetric about x2 = 0.5. Solutions
are symmetric only for homogeneous isotropic case, as expected. As also expected,
the results (see Figure 16) show that inhomogeneity and anisotropy effects on the
values of solution c. Moreover, for all cases the results in Figure 16 indicate that
the system has a steady state solution.

After all, the results show that the anisotropy and inhomogeneity of material
effect the values of solution c. This suggests to take both aspects into account in
experimental studies.

Problem 5: We consider the inhomogeneous and anisotropic case of Problem
4 again. But we change slightly the set of the boundary conditions of Problem 4
especially on the side AD. Now we use three cases of the boundary condition on the
side AD, namely

P = 1− exp (−1.75t) on side AD
P = 0.15t on side AD
P = 0.12t (5− t) on side AD

The results in Figure 17 are expected. The trends of the solutions c mimics the
trends of the exponential function 1−exp (−1.75t), the linear function 0.15t and the
quadratic function 0.12t (5− t) of the boundary condition on side AD. Specifically,
for the exponential function 1 − exp (−1.75t), as time t goes to infinity, values of
this function go to 1. So for big value of t, Problem 5 is similar to Problem 4 of the
anisotropic inhomogeneous case. And the two plots of solutions c for Problem 4 and
Problem 5 in Figure 17 verifies this, they approach a same steady state solution as
t gets bigger.

5. Conclusion
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Figure 15: Symmetry of solutions c about x2 = 0.5 for Problem 4
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Figure 16: Solutions c at (x1, x2) = (0.5, 0.5) for Problem 4
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A mixed Laplace transform and standard BEM has been used to find numerical
solutions to initial boundary value problems for anisotropic exponentially graded
materials which are governed by the diffusion-convection equation (1.1) of com-
pressible flow. The method is easy to be implemented and involves a time variable
free fundamental solution. It gives accurate solutions as it does not involve round
error propagation. It solves the boundary integral equation (3.15) independently
for each specific value of t at which the solution is computed. Unlikely, the methods
with time variable fundamental solution may produce less accurate solutions as the
fundamental solution sometimes contain time singular points and also solution for
the next time step is based on the solution of the previous time step so that the
round error may propagate.

As the coefficients dij (x) , vi (x) , α (x) do depend on the spatial variable x only
and on the same inhomogeneity or grading function g(x), it will be of interest to
extend the study in the future to the case when the coefficients depend on different
grading functions varying also with the time variable t.

In order to use the boundary integral equation (3.15), the values c (x, t) or
P (x, t) of the boundary conditions as stated in Section of the original system
in time variable t have to be Laplace transformed first. This means that from the
beginning when we set up a problem, we actually put a set of approximating bound-
ary conditions. Therefore it is really important to find a very accurate technique of
numerical Laplace transform inversion.
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