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SOME CLASSES OF INTEGRAL EQUATIONS OF

CONVOLUTIONS-PAIR GENERATED BY

THE KONTOROVICH-LEBEDEV, LAPLACE AND

FOURIER TRANSFORMS

Trinh Tuan

Abstract. In this article, we prove the existence of a solution to some

classes of integral equations of generalized convolution type generated

by the Kontorovich-Lebedev (K) transform, the Laplace (L) transform
and the Fourier (F) transform in some appropriate function spaces and

represent it in a closed form.

1. Introduction

We investigate the integral equation of second type of the form, see [6].

(1.1) f(x) + λ

∫ T

0

K(x, τ)f(τ)dτ = g(x), x > 0,

where λ is an arbitrary real number, T > 0, g(x) is a given function, K(x, τ)
is the kernel and f is the unknown function. For general kernels K(x, τ),
an explicit solution to (1.1) is not known, and approximate solutions have
been sought instead. Nevertheless, some authors tried to get explicit analytic
solutions to particular cases of (1.1), for example, in [6] of H. M. Srivastava
and R. G. Buschman have found analytic solutions to (1.1) for the kernels
K(x, τ) = K(x−τ) = (x−τ)α; e−a|x−τ |; sinh(a(x−τ)), and aJ1(a(x−τ)) with
J1 being the Bessel functions. Also, in the fifties of the last century, there were
some results for Toeplitz-Hankel equations, e.g., for (1.1) with

K(x, τ) = k1(x− τ) + k2(x+ τ),

where k1 is a Toeplitz kernel, k2 is a Hankel kernel, see [2,4,13]. However, the
explicit form of solution is not known for general Toeplitz-Hankel equations. To
this end, during the last years some authors used the notion of convolutions and
generalized convolution, for example those of the Kontorovich-Lebedev (K),
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Hartley (H), Laplace (L), Fourier sine (Fs) and Fourier cosine (Fc) transforms,
see [8–11, 14, 16, 18] to obtain explicit solutions to (1.1). In addition, it is also
possible to study the problem in the form of Fredholm integral equations using
the generalized convolution technique in [17].

In this paper, we will investigate the equation (3.1) on (0,+∞) with sepa-
rable kernels of the form

K(x, u) = k1(x, u) + k2(x, u),

where k1 and k2 are kernels some generalized convolutions generated by the
Kontorovich-Lebedev transform, the Laplace transform and the Fourier trans-
form. To deal with this equation, we transform it into integral equations of
convolutions-pair and then use the properties of generalized convolutions to
prove the existence of a solution as well as represent it in a closed form, see
Theorems 3.1, 3.2 and 3.3 bellow. By choosing k1, k2 are the kernel of general-
ized convolutions then the equation (3.1) to become a kind of integral equation
of convolution-pair and apply the results in [3,7,11,14,18] to provide solutions.

We note that we prove these results without using the Wiener-Lévy theorem
if comparing with the results in [8–11,14–16,18]. Our results are the first ones
which combine the Kontorovich-Lebedev transform, Laplace’s transform and
the Fourier transform.

2. Preliminaries

The Fourier cosine transform (Fc) and its inverse (F−1
c ) formula is of the

form (see [12])

(2.1) (Fcf)(y) =

√
2

π

∫ +∞

0

f(x) cos(xy)dx, y > 0,

and

(2.2) f(x) =

√
2

π

∫ +∞

0

(Fcf)(y) cos(xy)dy, x > 0.

The Fourier sine transform (Fs) and its inverse (F−1
s ) formula is of the form

(see [12])

(2.3) (Fsf)(y) =

√
2

π

∫ +∞

0

f(x) sin(xy)dx, y > 0,

and

(2.4) f(x) =

√
2

π

∫ +∞

0

(Fsf)(y) sin(xy)dy, x > 0.

The Laplace transform (L) is of the form (see [5])

(2.5) (Lf)(y) =

∫ ∞
0

f(x)e−xydx, y > 0.
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The Kontorovichh-Lebedev transform (K) is of the form (see [19])

(2.6) (Kf)(x) =

∫ ∞
0

Kix(t)f(t)dt,

here Kix(t) is the Macdonald function (see [19])

Kix(t) =

∫ ∞
0

e−t coshu cosxu du, x > 0, t > 0.

The inverse Kontorovichh-Lebedev transform (K−1) is defined as follow (see
[19])

(2.7) (K−1f)(x) =
2

π2
x sinhπx

∫ ∞
0

Kix(y)y−1f(y)dy, x > 0.

The following function spaces will be used in the next sections. First, the
space Lp(R+, γ) is defined as follow (see [1])

Lp(R+, γ) =

{
f :

(∫
R+

γ(x) · |f(x)|pdx
) 1
p

< +∞

}
, 1 6 p <∞.

One can easily see that Lp(R+) ⊂ Lp(R+, γ).
The space Ac,As and H(R) is defined as follow (see [11])

Ac = {f = Fck, k ∈ L1(R+)}, As = {f = Fsk, k ∈ L1(R+)}

with norm ‖f‖Ac := ‖k‖L1(R+); ‖f‖As := ‖k‖L1(R+) and

H(R) = {f : Lf ∈ L2(R+)}.

One can easily see that L2(R+) ⊂ H(R+).

3. Integral equations of convolution-pair

In this section, we consider solve in a closed form of the integral equations
(3.1) by using the kernel pair k1 and k2 are the kernel of differently general-
ized convolution which were predefined. After that, we will use the generalized
convolutions of techniques for integral transforms (K), (L), (Fs) and (Fc) in
[3,7,11,14,18] to convert equation (3.1) becomes a kind of integral equation of
convolution-pair.

(3.1) f(x) +

∫ ∞
0

K(x, u)f(u)du = g(x), x > 0.

Here g is the given functions, assume that kernel is K(x, u) = k1(x, u)+k2(x, u)
and f is an unknown function.

First, we solve the equation (3.1) in the case k1, k2 as follows:
k1(x, u)=

1

π2

∫ ∞
0

1

u

[
e−u cosh(x+v)+e−u cosh(x−v)

]
ϕ1(u)du, x, v > 0,

k2(x, u)=
1

π

∫ ∞
0

[
v

v2+(x−u)2
+

v

v2+(x+u)2

]
Ψ1(u)du, x, v > 0.

(3.2)
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Theorem 3.1. Let ϕ1,Ψ1, g be known functions and suppose that

ϕ1 ∈ L1

(
R+,

1 +
√
x3

√
x3

)
,Ψ1 ∈ L2 (R+) , g ∈ L1(R+) ∩ Ac

such that

(Fcg)(y)

1 +
(K−1ϕ1)(y)

y sinh πy
+ (LΨ1)(y)

∈ L1(R+) ∩ Ac,∀y > 0.

Then the integral equation (3.1) has a unique solution in L1(R+) ∩ Ac which
is of the form

f(x) =

√
2

π

∫ ∞
0

(Fcg)(y)

1 +
(K−1ϕ)(y)

y sinh πy
+ (Lψ)(y)

cos(xy)dy, x > 0,

where the Fc,K
−1,L are the respectively defined by (2.1), (2.7) and (2.5).

Proof. The main tool for our proof will be the following generalized convolu-

tion. Let ϕ1 ∈ L1

(
R+,

1+
√
x√

x3

)
, f ∈ L1(R+), γ1 = 1

y sinh πy , the generalized

convolution with weight function γ1 for the (Fc,K
−1) transforms is defined as

follow (see [14])

(ϕ1

γ1

*
1
f)(x)(3.3)

=
1

π2

∫
R2

+

1

u

[
e−u cosh(x+v) + e−u cosh(x−v)

]
ϕ1(u)f(v)dudv, ∀x > 0.

Generalized convolution (3.3) belongs to L1(R+), and the following factoriza-
tion equality holds

Fc(ϕ1

γ1

*
1
f)(y) =

1

y sinh πy
(K−1ϕ1)(y)(Fcf)(y), y > 0.(3.4)

Let Ψ1, f ∈ L2(R+), the generalized convolution for the (Fc, L) transforms
is defined as follow (see [11])

(f ∗
{ 2

3}
Ψ1)(x)(3.5)

=
1

π

∫
R2

+

[
v

v2 + (x−u)2
± v

v2 + (x+u)2

]
f(u)Ψ1(v)dudv, ∀x > 0.

Moreover, (f ∗
{ 2

3}
Ψ1) ∈ A{c

s
}, and the following factorization equality holds

F{ cs}(f ∗{ 2
3}

Ψ1)(y) = (F{ cs}f)(y)(LΨ1)(y), y > 0.(3.6)
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With the kernel pair k1, k2 were determined in (3.2), combined with the for-
mula (3.3) and (3.5) then the equation (3.1) becomes integral equations of
convolution-pair can be rewritten in the form

f(x) + (ϕ1
γ1∗
1
f)(x) + (f ∗

2
Ψ1)(x) = g(x), x > 0,(3.7)

where, ϕ1 ∈ L1

(
R+,

1+
√
x3√
x3

)
, Ψ1 ∈ L2 (R+) , g ∈ L1 (R+) ∩ Ac.

Applying the Fourier cosine Fc on both sides of (3.7), basing on the factor-
izations (3.4), (3.6) and inverse formula (2.2), we have

(Fcf)(y) + Fc(ϕ1
γ1∗
1
f)(y) + Fc(f ∗

2
Ψ1)(y) = (Fcg)(y), y > 0.

(Fcf)(y)+
1

y sinhπy
(K−1ϕ1)(y)(Fcf)(y)+(Fcf)(y)(LΨ1)(y)=(Fcg)(y), ∀y>0.

Then

(Fcf)(y)

[
1 +

(K−1ϕ1)(y)

y sinh πy
+ (LΨ1)(y)

]
= Fcg(y), ∀y > 0.

Under the hypothesis, (Fcg)(y)

1+
(K−1ϕ1)(y)
y sinh πy +(LΨ1)(y)

∈ L1(R+) ∩Ac, by the inverse for

Fourier cosine transform, we obtain

f(x) =

√
2

π

∫ ∞
0

(Fcg)(y)

1 +
(K−1ϕ1)(y)

y sinh πy
+ (LΨ1)(y)

cos(xy)dy, x > 0,

and f belongs to L1(R+) ∩ Ac. The proof is complete. �

Next, we solve the equation (3.1) in the case k3, k4 as follows:
k3(x, u)=

1

π2

∫ ∞
0

1

u

[
e−u cosh(x−v)−e−u cosh(x+v)

]
ϕ2(u)du, x, v > 0,

k4(x, u)=
1

π

∫ ∞
0

[
v

v2+(x−u)2
− v

v2+(x+u)2

]
Ψ2(u)du, x, v > 0.

(3.8)

Theorem 3.2. Let ϕ2, ψ2, g known functions and suppose that

ϕ2 ∈ L1

(
R+,

1√
x3

)
,Ψ2 ∈ L2 (R+) , g ∈ L1 (R+) ∩ As

such that

(Fsg)(y)

1 + (K ϕ2)(y) + (LΨ2)(y)]
∈ L1(R+) ∩ Ac, ∀y > 0.

Then the equation (3.1) has a unique solution f ∈ L1(R+)∩As which is of the
form

f(x) =

√
2

π

∫ ∞
0

(Fsg)(y)

1 + (K ϕ2)(y) + (LΨ2)(y)
sin(xy)dy, x > 0,

where the Fs,K,L are the respectively defined by (2.3), (2.6) and (2.5).
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Proof. In order to prove the theorem, we recall the following generalized con-
volution for the (Fs,K) transform as follow:

Let Ψ2∈L1

(
R+,

1√
x3

)
, f ∈ L1 (R+), the generalized convolution (Ψ2∗

4
, f)(x)

for the Fourier sine and Kontorovichh-Lebedev transform is of the form (see
[18])

(Ψ2 ∗
4
f)(x)(3.9)

=
1

π2

∫
R2

+

1

u

[
e−u cosh(x−v) − e−u cosh(x+v)

]
Ψ2(u)f(v)dudv, ∀x > 0.

We known that (Ψ2 ∗
4
f) ∈ L1(R+) and satisfies the following factorization

equality

Fs(Ψ2 ∗
4
f)(y) = (K Ψ2)(y)(Fs f)(y), y > 0.(3.10)

With the kernel pair k3, k4 were determined in (3.8) and using the generalized
convolutions (3.5), (3.9) then the equation (3.1) becomes integral equations of
convolution-pair can be rewritten in the form

f(x) + (ϕ2 ∗
4
f)(x) + (f ∗

3
Ψ2)(x) = g(x), x > 0.(3.11)

Applying the Fourier sine transform Fs on both sides of equation (3.11),
with the help of equalities (3.10), (3.6), and inverse formula (2.4), we obtain

(Fsf)(y) + Fs(ϕ2 ∗
4
f)(y) + Fs(f ∗

3
Ψ3)(y) = (Fsg)(y), y > 0,

(Fsf)(y) [1 + (K ϕ2)(y) + (LΨ2)(y)] = (Fsg)(y), y > 0.

Under the hypothesis, (Fsg)(y)
1+(K ϕ2)(y)+(LΨ2)(y) ∈ L1(R+) ∩ As,∀y > 0, thanks

to the inverse formula of Fourier sine transform (2.4), we have a solution in
L1(R+) ∩ As as follow:

f(x) =

√
2

π

∫ ∞
0

(Fsg)(y)

1 + (K ϕ2)(y) + (LΨ2)(y)
sin(xy)dy, x > 0.

The proof of theorem is complete. �

Next, we will choose kernel k5, k6 as follows:


k5(x, y) =

1

π2

∫ ∞
0

[
sinh(x+ y)e−u cosh(x+y) ± sinh(x− y)e−u cosh(x−y)

]
ϕ3(u)du,

x, y > 0,

k6(x, y) =
1

2π

∫ ∞
0

[
Θ{ 1

2}
(x− 1, y, v)−Θ{ 1

2}
(x+ 1, y, v)

]
Ψ3(v)dv, x, y > 0.

(3.12)

Here ϕ3 ∈ L1

(
R+,

1
x

)
, Ψ3 ∈ H (R+), g ∈ L1(R+) ∩ L2(R+), γ2 = 1

sinh(πy) ,

γ3,4 = ∓ sin y are given functions, Θ{ 1
2}

are defined by

Θ{ 1
2}

(x, u, v) =
v

v2 + (x− u)2
∓ v

v2 + (x+ u)2
.
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Theorem 3.3. Suppose that ϕ3 ∈ L1

(
R+,

1
x

)
, Ψ3 ∈ H (R+), g ∈ L1(R+) ∩

L2(R+) such that(
F{ sc}g

)
(y)

1 +
(K−1ϕ3)(y)

sinh πy
∓ sin y(LΨ3)(y)

∈ L1

(
R+,

1

x

)
∩ L2 (R+) , ∀y > 0.

Then the equation (3.1) has a unique solution f ∈ L1

(
R+,

1
x

)
∩L2 (R+) which

is defined by formula

f(x) =

√
2

π

∫ ∞
0

(
F{ sc}g

)
(y)

1 +
(K−1ϕ3)(y)

sinh πy
∓ sin y(LΨ3)(y)

{
cos(xy)
sin(xy)

}
dy, x > 0.

where the Fs, Fc,K
−1, L are the respectively defined by (2.3), (2.1), (2.7), (2.5).

Proof. First, we recall the following generalized convolutions for the Kontoro-
vichh-Lebedev, Laplace, and Fourier transforms which are useful for our proof.
Let ϕ3 ∈ L1

(
R+,

1
x

)
, f ∈ L (R+) , γ2 = 1

sinh (πy) . The generalized convolutions

with the weight function γ2 for the integral transforms Fs, Fc,K
−1 are defined

as follow (see [7]):

(ϕ3

γ2

*
{ 5

6}
f)(x)(3.13)

=
1

π2

∫
R2

+

[
sinh(x+ v) e−u cosh(x+v) ± sinh(x− v) e−u cosh(x−v)

]
ϕ3(u)f(v)dudv, ∀x > 0.

Moreover, (ϕ3

γ2

*
{ 5

6}
f) ∈ L1(R+), and

F{ sc}(ϕ3

γ2

*
{ 5

6}
f)(y) = γ2(y)(K−1ϕ3)(y)(F{ cs}f)(y), ∀y > 0.(3.14)

The generalized convolutions for the Fourier cosine, Fourier sine and the Laplace
transforms with the weight function γ3,4 = ∓ sin y of two functions h ∈ L2(R+),
k ∈ H(R+) are defined as follow (see [3]):

(f
γ3,4

*
{ 7

8}
Ψ3)(x)(3.15)

=
1

2π

∫
R2

+

[
Θ{ 1

2}
(x− 1, u, v)−Θ{ 1

2}
(x+ 1, u, v)

]
f(u)Ψ3(v)dudv, ∀x > 0.

Here Θ{ 1
2}

(x, u, v) = v
v2+(x−u)2 ∓

v
v2+(x+u)2 .
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Then, (f
γ3,4

*
{ 7

8}
Ψ3) ∈ L2(R+) and satisfy the following factorization equalities

F{ cs}(f
γ3,4

*
{ 7

8}
Ψ3)(y) = ∓ sin y(F{ sc}f)(y)(LΨ3)(y), ∀y > 0.(3.16)

With how to choose the kernel pair k5, k6 as in (3.12), combined with the
generalized convolutions (3.13), (3.15), then the equation (3.1) becomes integral
equations of convolution-pair can be rewritten in the form

(3.17) f(x) + (ϕ3

γ2

*
{ 5

6}
f)(x) + (f

γ3,4

*
{ 7

8}
Ψ3)(x) = g(x), x > 0,

where ϕ3 ∈ L1

(
R+,

1
x

)
, Ψ3 ∈ H (R+), g ∈ L1(R+) ∩ L2(R+), γ2 = 1

sinh (πy) ,

γ3,4 = ∓ sin y.
Applying the F{ sc} transform on both sides of (3.17), we have

(F{ sc}f)(y)+F{ sc}(ϕ3

γ2

*
{ 5

6}
f)(y) + F{ sc}(f

γ3,4

*
{ 7

8}
Ψ3)(y)=(F{ sc}g)(y), ∀y > 0.

With the help of factorization equalities (3.14), (3.16), and inverse formula
(2.2), (2.4), this equality becomes

(F{ sc}f)(x) +
1

sinh πy
(K−1ϕ3)(y)(F{ cs} f)(y)∓ sin y(F{ cs} f)(y)(LΨ3)(y)

= (F{ sc}g)(y), ∀y > 0.

Then, we have

(F{ cs} f)(y) =
(F{ sc}g)(y)

1 +
(K−1ϕ3)(y)

sinh πy
∓ sin y(LΨ3)(y)

, ∀y > 0.

Since the hypothesis(
F{ sc}g

)
(y)

1 +
(K−1ϕ3)(y)

sinh πy
∓ sin y(LΨ3)(y)

∈ L1

(
R+,

1

x

)
∩ L2 (R+) , ∀y > 0.

We have

f(x) =

√
2

π

∫ ∞
0

(F{ sc}g)(y)

1 +
(K−1ϕ3)(y)

sinh πy
∓ sin y(LΨ3)(y)

{
cos(xy)
sin(xy)

}
dy, x > 0.

Moreover, we can see that f(x) ∈ L1

(
R+,

1
x

)
∩ L2 (R+) .

The proof of theorem is complete. �

In the following studies, we will evaluate the estimates of solutions and
thereby study the properties of boundedness of solution of these problems.
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