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THE RELIABLE MODIFIED OF LAPLACE ADOMIAN

DECOMPOSITION METHOD TO SOLVE NONLINEAR

INTERVAL VOLTERRA-FREDHOLM INTEGRAL

EQUATIONS

Ahmed A. Hamoud∗ and Kirtiwant P. Ghadle

Abstract. In this paper, we propose a combined form for solving
nonlinear interval Volterra-Fredholm integral equations of the sec-
ond kind based on the modifying Laplace Adomian decomposition
method. We find the exact solutions of nonlinear interval Volterra-
Fredholm integral equations with less computation as compared with
standard decomposition method. Finally, an illustrative example has
been solved to show the efficiency of the proposed method.

1. Introduction

The topic of Volterra-Fredholm integral equations which have at-
tracted growing interest in recent years. The Volterra-Fredholm inte-
gral equation appears from diverse biological and physical models. The
primary features of these models are of wide usable [10]. There are
many techniques both analytical and numerical approaches for solving
nonlinear integral equations as decomposition method, variational iter-
ation method, finite element method, homotopy perturbation method
and homotopy analysis method, and its modification [1–3,9,10]. One of
the efficient techniques for solving nonlinear Volterra-Fredholm integral
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equations is the decomposition method which was stated in [2, 10]. In
this direction, Hussain and Khan [5] have used the modified Laplace de-
composition method for giving the exact solutions of nonlinear partial
or coupled partial differential equations, and provide the series solu-
tion of a Blasius flow equation [6]. Vinh et al. [7], studied the existence
and uniqueness of solutions of the interval-valued Volterra integral equa-
tions. Also, Ahmed and Ghadle [4], carefully applied a reliable modifica-
tion of Laplace Adomian decomposition method for solved the Volterra-
Fredholm integro differential equations. Salahshour and Khan [8] have
applied the modification of Laplace decomposition method to solve non-
linear interval Volterra integral equations of the form:

u(x) = f(x) + µ

∫ x

0

k(x, t)un(t)dt.

But in this paper, we will study the modification of Laplace Adomian
decomposition method to solve the nonlinear interval Volterra-Fredholm
integral equation of the form:

u(x) = f(x) + λ

∫ x

a

k1(x, t)u
n(t)dt+ µ

∫ b

a

k2(x, t)u
m(t)dt,

Our aim in this work is to obtain the analytical solutions of the non-
linear interval Volterra-Fredholm integral equation by using the modified
Laplace Adomian decomposition method. The remainder of the paper
is organized as follows: In Section 2, some basic concepts about inter-
val arithmetic are stated. In Section 3, a brief discussion of the non-
linear interval Volterra-Fredholm integral equations is introduced. In
Section 4, the new method based on the modification of Laplace trans-
form Adomian decomposition method is proposed. Section 5, contains
illustrative example to demonstrate the accuracy and efficiency of the
proposed method. Finally, we will give a report on our paper and a brief
conclusion is given in Section 6.

2. Preliminaries

In this section, we state some basic concepts about interval computa-
tions [8]. Let I denote the family of all nonempty, compact and convex
subsets of R× R. If U and V are two intervals stated by

U = [U1, U2], V = [V1, V2],
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then,
U + V = [U1 + V1, U2 + V2],

λU = [λU1, λU2], λ ≥ 0,

Note that the each a ∈ R can be stated as interval denoted by [a, a].
The Hausdorff metric H in I is stated by

H(U, V ) = max{|U1 − V1|, |U2 − V2|}.
It is well-known that (I,H) is a complete, separable and locally compact
metric space. Also, the following properties hold

H(U + V,M +N) ≤ H(U,M) +H(V,N),

H(λU, λV ) ≤ |λ|H(U, V ),

where U, V,M and N are intervals.
In this paper, we adopt the following operation for division

U

V
=

[
U1

V1
,
U2

V2

]
.(1)

Clearly, using this notation, U
V

is not always as interval. But, when
we translate each interval system to two related real-valued systems,
all these systems will solve distinctly. After obtaining solutions of each
real-valued system, we finally check that the obtained solutions create
an interval as output of original interval system or not. On the other
hand, we should determine the domain the lower solution is less than or
equal to upper solution for each independent argument of the solution.
Our results demonstrate that using this king of division, some interesting
results are derived. Note that, appearing such unusual computation is
not new in the interval theory, for example, introducing the Hukhara
difference and etc. Now, we state an interesting result using Eq.(1).

Theorem 2.1. Let us consider the given interval U . Then, using the
mentioned division formulation, we have U

U
= [1, 1].

Proof. Using Eq.(1), and U = [U1, U2] we have

U

U
=

[U1, U2]

[U1, U2]

=

[
U1

U1

,
U2

U2

]
= [1, 1]

which completes the proof of the theorem.
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3. Interval Volterra-Fredholm Integral Equations

Let us consider the nonlinear interval Volterra-Fredholm integral equa-
tion of the form

(2) u(x) = f(x) + λ

∫ x

a

k1(x, t)u
n(t)dt+ µ

∫ b

a

k2(x, t)u
m(t)dt,

where f is interval non-homogeneous term with lower-upper represen-
tation f(x) = [f1(x), f2(x)], λ, µ are a parameters, k1(x, t) and k2(x, t)
are the kernels of the equation belongs to R × R −→ R, and un, um

are the nonlinear interval terms, n,m ∈ N, with un = [un1 , u
n
2 ], (R,N are

the space of all real and natural numbers, respectively) and x ∈ T =
[a, b], a < b. Moreover, we say that û is the solution of (2), if

sup
x∈T
H
(
û(x), f(x) + λ

∫ x

a

k1(x, t)û
n(t)dt+ µ

∫ b

a

k2(x, t)û
m(t)dt

)
= 0.

Now, we state a characterization theorem for Eq.(2).

Theorem 3.1. The nonlinear interval Volterra-Fredholm integral equa-
tion (2) is equivalent to real-valued integral systems

u1(x) = f1(x) + λ

∫ x

a

k1(x, t)(u
n)1(t)dt+ µ

∫ b

a

k2(x, t)(u
m)1(t)dt,

u2(x) = f2(x) + λ

∫ x

a

k1(x, t)(u
n)2(t)dt+ µ

∫ b

a

k2(x, t)(u
m)2(t)dt,

where n,m ∈ N, x ∈ T , k1(x, t)(un)i(t) and k2(x, t)(u
m)i(t), i = 1, 2 are

equicontinuous functions.

Proof. It is straightforward.

4. Description of the Method

Here, we state our proposed method to solve NIVIEs based on the two
steps Laplace transform and Adomian decomposition method. Applying
the Laplace transform L on the both sides of the equation yield
(3)

L[u(x)] = L[f(x)] + L
[
λ

∫ x

a

k1(x, t)u
n(t)dt+ µ

∫ b

a

k2(x, t)u
m(t)dt

]
,
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The lower-upper representation (LU-representation) of Eq. (3) is

L[u1(x)] = L[f1(x)] + L
[
λ

∫ x

a
k1(x, t)(u

n)1(t)dt+ µ

∫ b

a
k2(x, t)(u

m)1(t)dt

]
,

L[u2(x)] = L[f2(x)] + L
[
λ

∫ x

a
k1(x, t)(u

n)2(t)dt+ µ

∫ b

a
k2(x, t)(u

m)2(t)dt

]
,

Then, using the inverse Laplace transform leads to

u1(x) = f1(x) + L−1
[
L
[
λ

∫ x

a
k1(x, t)(u

n)1(t)dt+ µ

∫ b

a
k2(x, t)(u

m)1(t)dt

]]
,

u2(x) = f2(x) + L−1
[
L
[
λ

∫ x

a
k1(x, t)(u

n)2(t)dt+ µ

∫ b

a
k2(x, t)(u

m)2(t)dt

]]
,

Using the assumption of LADM, let us consider the solution u(x) =
[u1(x), u2(x)] is expanded into infinite series as follows:

u1(x) =
∞∑
n=0

(un)1, u2(x) =
∞∑
n=0

(un)2.(4)

Also, the nonlinear term un(x) = [(un)1(x), (un)2(x)] and um(x) =
[(um)1(x), (um)2(x)] where

(un)1(x) =
∞∑
n=0

(An)1(x),

(un)2(x) =
∞∑
n=0

(An)2(x),(5)

such that (An)1 and (An)2 are Adomian polynomials. Then, substituting
Eqs.(5) and Eq. (4) in Eqs. (4) yield

∞∑
n=0

(un)1 = f1(x) + L−1
[
L

[
λ

∫ x

a
k1(x, t)

∞∑
n=0

(An)1(t)dt

+ µ

∫ b

a
k2(x, t)

∞∑
n=0

((un)1)
m(t)dt

]]
,

∞∑
n=0

(un)2 = f2(x) + L−1
[
L

[
λ

∫ x

a
k1(x, t)

∞∑
n=0

(An)2(t)dt

+ µ

∫ b

a
k2(x, t)

∞∑
n=0

((un)2)
m(t)dt

]]
,
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By using the following Adomian polynomials

(An)1 =
1

n!
[
dn

dλn
[N(

∞∑
i=0

λiyi)1]]λ=0.

(An)2 =
1

n!
[
dn

dλn
[N(

∞∑
i=0

λiyi)2]]λ=0.

we derive the recursive relation given by

(u0)1 = f1(x),

(un+1)1 = L−1
[
L
[
λ

∫ x

a

k1(x, t)(An)1(t)dt+ µ

∫ b

a

k2(x, t)((un)1)
m(t)dt

]]
,

n ≥ 0,

and

(u0)2 = f2(x),

(un+1)2 = L−1
[
L
[
λ

∫ x

a

k1(x, t)(An)2(t)dt+ µ

∫ b

a

k2(x, t)((un)2)
m(t)dt

]]
,

n ≥ 0,

the LU-representation of solution will be determined.

5. Illustrative Example

In this section, we apply our proposed method to obtain the exact
solution of the nonlinear interval Volterra-Fredholm integral equation.
Indeed, this modification for Laplace transform Adomian decomposition
method is about some ideas to choose the initial values.

Example 5.1. Let us consider the nonlinear interval Volterra-Fredholm
integral equation

(6) u(x) = ĉ(2x− x4

12
− 5

3
) +

1

4ĉ

∫ x

0

(x− t)u2(t)dt+

∫ 1

0

(1 + t)u(t)dt,
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where ĉ = [ĉ1, ĉ2], ĉ1 > 0. The LU-representation of (6) is as follows:

u1(x) = ĉ1(2x−
x4

12
− 5

3
) +

1

4ĉ1

∫ x

0
(x− t)(u2)1(t)dt+

∫ 1

0
(1 + t)u1(t)dt,

u2(x) = ĉ2(2x−
x4

12
− 5

3
) +

1

4ĉ2

∫ x

0
(x− t)(u2)2(t)dt+

∫ 1

0
(1 + t)u2(t)dt,

Applying Laplace transform yields

L[u1(x)] = L
[
ĉ1(2x−

x4

12
− 5

3
) +

1

4ĉ1

∫ x

0
(x− t)(u2)1(t)dt+

∫ 1

0
(1 + t)u1(t)dt

]
,

L[u2(x)] = L
[
ĉ2(2x−

x4

12
− 5

3
) +

1

4ĉ2

∫ x

0
(x− t)(u2)2(t)dt+

∫ 1

0
(1 + t)u2(t)dt

]
,

Then, applying L−1 and some simplification yield

u1(x) = ĉ1(2x−
x4

12
− 5

3
) + L−1

[
L
[

1

4ĉ1

∫ x

0
(x− t)(u2)1(t)dt

+

∫ 1

0
(1 + t)u1(t)dt

]]
,

u2(x) = ĉ2(2x−
x4

12
− 5

3
) + L−1

[
L
[

1

4ĉ2

∫ x

0
(x− t)(u2)2(t)dt

+

∫ 1

0
(1 + t)u2(t)dt

]]
,

Using the fact

u1(x) =
∞∑
n=0

(un)1(x), u2(x) =
∞∑
n=0

(un)2(x),

we get:

∞∑
n=0

(un)1(x) = ĉ1(2x−
x4

12
− 5

3
) + L−1

[
L
[

1

4ĉ1

∫ x

0
(x− t)(u2)1(t)dt

+

∫ 1

0
(1 + t)u1(t)dt

]]
,

∞∑
n=0

(un)2(x) = ĉ2(2x−
x4

12
− 5

3
) + L−1

[
L
[

1

4ĉ2

∫ x

0
(x− t)(u2)2(t)dt

+

∫ 1

0
(1 + t)u2(t)dt

]]
,



330 Ahmed A. Hamoud and Kirtiwant P. Ghadle

By setting

∞∑
n=0

(An)1(x) = (u2)1(x),

∞∑
n=0

(An)2(x) = (u2)2(x),

As a consequence, some components of the Adomian polynomials are
given by:

(A0)1(t) = (u20)1(t),

(A1)1(t) = 2(u0)1(t)(u1)1(t),

.

.

.

(An)1(t) =
∞∑
i=0

(un−i)1(t)(ui)1(t),

and

(A0)2(t) = (u20)2(t),

(A1)2(t) = 2(u0)2(t)(u1)2(t),

.

.

.

(An)2(t) =
∞∑
i=0

(un−i)2(t)(ui)2(t),

So, we obtain

(u0)1(x) = ĉ1(2x−
x4

12
− 5

3
)

(un+1)1(x) = L−1
[
L
[

1

4ĉ1

∫ x

0

(x− t)(An)1(t)dt+

∫ 1

0

(1 + t)(un)1(t)dt

]]
,

n ≥ 0,
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and

(u0)2(x) = ĉ2(2x−
x4

12
− 5

3
)

(un+1)2(x) = L−1
[
L
[

1

4ĉ2

∫ x

0

(x− t)(An)2(t)dt+

∫ 1

0

(1 + t)(un)2(t)dt

]]
,

n ≥ 0,

Consequently, some of the first few components of un are given:

u1(x) = L−1
[
L
[

1

4ĉ1

∫ x

0

(x− t)(ĉ1(2t−
t4

12
− 5

3
))2dt

+

∫ 1

0

(1 + t)(ĉ1(2x−
x4

12
− 5

3
))dt

]]
,

= ĉ1(−
311

360
+

25

72
x2 − 5

18
x3 +

1

12
x4 + ...).

u2(x) = L−1
[
L
[

1

4ĉ2

∫ x

0

(x− t)(ĉ2(2t−
t4

12
− 5

3
))2dt

+

∫ 1

0

(1 + t)(ĉ2(2x−
x4

12
− 5

3
))dt

]]
,

= ĉ2(−
311

360
+

25

72
x2 − 5

18
x3 +

1

12
x4 + ...).

Now, we apply our new proposed approach. Let

f1(x) = f 0
1 (x) + f 1

1 (x),

f2(x) = f 0
2 (x) + f 1

2 (x),

where

f 0
1 (x) = ĉ1(2x),

f 1
1 (x) = ĉ1(−

x4

12
− 5

3
)

f 0
2 (x) = ĉ2(2x)

f 1
2 (x) = ĉ2(−

x4

12
− 5

3
),

Since f 1
1 and f 1

2 do not satisfy Eq.(6), choosing

(u0)1(x) = f 0
1 (x),
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and

(u0)2(x) = f 0
2 (x),

the exact solution is derived as follows:

(u0)1(x) = ĉ1(2x),

(u1)1(x) = ĉ1(−
x4

12
− 5

3
) + L−1

[
L
[

1

4ĉ1

∫ x

0

(x− t)(A0)1(t)dt

+

∫ 1

0

(1 + t)(u0)1(t)dt

]]
= 0

.

.

.

(un+1)1(x) = 0, n ≥ 1,

and

(u0)2(x) = ĉ2(2x),

(u1)2(x) = ĉ2(−
x4

12
− 5

3
) + L−1

[
L
[

1

4ĉ2

∫ x

0

(x− t)(A0)2(t)dt

+

∫ 1

0

(1 + t)(u0)2(t)dt

]]
= 0

.

.

.

(un+1)2(x) = 0, n ≥ 1.

Hence, the LU-representation of solution is obtained as follows:

u1(x) =
∞∑
n=0

(un)1(x) = ĉ1(2x),

u2(x) =
∞∑
n=0

(un)2(x) = ĉ2(2x),

or in the closed form, we obtain:

u(x) =
∞∑
n=0

(un)(x) = ĉ(2x).(7)



Nonlinear Interval Volterra-Fredholm Integral Equations 333

Indeed, in this case, we obtain asymptotic solution, i.e., it is easy to
verify that for each x ∈ R, u stated in Eq.(7) provides an interval-valued
function. Also,

H
(
ĉ(2x), ĉ(2x) + ĉ(−x

4

12
− 5

3
) +

1

4ĉ

∫ x

0

(x− t)(ĉ(2t))2(t)dt

+

∫ 1

0

(1 + t)(ĉ(2t))(t)dt

)
= 0.

6. Conclusion

In this paper, we carefully applied a reliable modification of Laplace
Adomian decomposition method to solve the nonlinear interval Volterra-
Fredholm integral equations of the second kind (NIVFIEs). The main
advantage of this method is the fact that it gives the analytical solution.
Also, this method is combining two powerful methods for obtaining ex-
act solutions of (NIVFIEs). However, in order to convert the original
problem to some related deterministic equations, we have used some new
changes in the interval arithmetic to achieve the correct extension of the
original problem in the interval framework. At the end, our results show
the enough efficiency of the proposed approach.
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