• Title/Summary/Keyword: krein space

Search Result 19, Processing Time 0.025 seconds

AN EXISTENCE OF LINEAR SYSTEMS WITH GIVEN TRANSFER FUNCTION

  • Yang, Meehyea
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.99-107
    • /
    • 1993
  • A vector space K with scalar product <.,.> is called a Krein space if it can be decomposed as a northogonal sum of a Hilbert space and an anti-space of a Hilbert space. The space K induces a Hilbert space $K_{J}$ in the inner product <.,.> $K_{J}$=<.,.>K, where $J^{2}$=I. the eigenspaces of J are denoted by $K^{+}$$_{J}$, which is a Hilbert space and $K^{-}$$_{J}$, which is an anti-space of a Hilbert space. Then the Krein space K is the orthogonal sum of $K^{+}$$_{J}$ and $K^{-}$$_{J}$. Such a decomposition of K is called a fundamental decomposition. In general, fundamental decompositions are not unique. The norm of the Hilbert space depends on the choice of a fundamental decomposion, but such norms are equivalent. The topology generated by these norms is called the strong or Mackey topology of K. It is used to define all topological notions on the Krein space K with respect to this topology. The Pontryagin index of a Krein space is the dimension of the antispace of a Hilbert space in any such decomposition. the dimension does not depend on the choice of orthogonal decomposition. A Krein space is called a Pontryagin space if it has finite Pontryagin index.dex.yagin index.dex.

  • PDF

REPRODUCING KERNEL KREIN SPACES

  • Yang, Mee-Hyea
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.659-668
    • /
    • 2001
  • Let S(z) be a power series with operator coefficients such that multiplication by S(z) is an everywhere defined transformation in the square summable power series C(z). In this paper we show that there exists a reproducing kernel Krein space which is state space of extended canonical linear system with transfer function S(z). Also we characterize the reproducing kernel function of the state space of a linear system.

Robust Transfer Alignment Method based on Krein Space (크레인 공간에 기반한 강인한 전달정렬 기법)

  • Sung-Hye Choe;Ki-Young Park;Hyoung-Min Kim;Cheol-Kwan Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • In this paper, a robust transfer alignment method is proposed for a strapdown inertial navigation system(SDINS) with norm-bounded parametric uncertainties. The uncertainties are described by the energy bound constraint, i.e., sum quadratic constraint(SQC). It is shown that the SQC can be coverted into an indefinite quadratic cost function in the Krein space. Krein space Kalman filter is designed by modifying the measurement matrix and the variance of measurement noises in the conventional Kalman filter. Since the proposed Krein space Kalman filter has the same recursive structure as a conventional Kalman filter, the proposed filter can easily be designed. The simulation results show that the proposed filter achieves robustness against measurement time delay and high dynamic environment of the vehicle.

ON THE CHARACTERIZATION OF DIFFERENCE QUOTIENT TRANSFORMATION

  • YANG MEEHYEA
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.535-540
    • /
    • 2006
  • In this paper, characterizations of difference quotient transformation in the Krein space which is contained continuously and contractively in the krein space of square summable power series C (z) is obtained from the complementation theory.

The state space of a canonical linear system

  • Yang, Mee-Hyea
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.447-459
    • /
    • 1995
  • A fundamental problem is to construct linear systems with given transfer functions. This problem has a well known solution for unitary linear systems whose state spaces and coefficient spaces are Hilbert spaces. The solution is due independently to B. Sz.-Nagy and C. Foias [15] and to L. de Branges and J. Ball and N. Cohen [4]. Such a linear system is essentially uniquely determined by its transfer function. The de Branges-Rovnyak construction makes use of the theory of square summable power series with coefficients in a Hilbert space. The construction also applies when the coefficient space is a Krein space [7].

  • PDF

Discrete-Time Robust $H_{\infty}$ Filter Design via Krein Space

  • Lee, T.H.;Jung, S.Y.;Seo, J.E.;Shin, D.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.542-547
    • /
    • 2003
  • A new approach to design of a discrete-time robust $H_{\infty}$ filter in finite horizon case is proposed. It is shown that robust $H_{\infty}$ filtering problem can be cast into the minimization problem of an indefinite quadratic form, which can be solved by implementing the Kalman filter defined in Krein space. The proposed filter is readily derived by simply augmenting the state space model and has the robustness property against the parameter uncertainties of a given system.

  • PDF

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems (접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계)

  • Shin Jong-Gu;Lee Tae Hoon;Yoon Tae-Sung;Choi Yoon-Ho;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar

FACTORIZATION IN KREIN SPACES

  • Yang, Mee-Hyea
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.801-810
    • /
    • 1998
  • Let A(z), W(z) and C(z) be power series with operator coefficients such that W(z) = A(z)C(z). Let D(A) and D(C) be the state spaces of unitary linear systems whose transfer functions are A(z) and C(z) respectively. Then there exists a Krein space D which is the state space of unitary linear system with transfer function W(z). And the element of D is of the form (f(z) + A(z)h(z), k(z) + C*(z)g(z)) where (f(z),g(z)) is in D(A) and (h(z),k(z)) is in D(C).

  • PDF

α-COMPLETELY POSITIVE MAPS ON LOCALLY C*-ALGEBRAS, KREIN MODULES AND RADON-NIKODÝM THEOREM

  • Heo, Jaeseong;Ji, Un Cig;Kim, Young Yi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • In this paper, we study ${\alpha}$-completely positive maps between locally $C^*$-algebras. As a generalization of a completely positive map, an ${\alpha}$-completely positive map produces a Krein space with indefinite metric, which is useful for the study of massless or gauge fields. We construct a KSGNS type representation associated to an ${\alpha}$-completely positive map of a locally $C^*$-algebra on a Krein locally $C^*$-module. Using this construction, we establish the Radon-Nikod$\acute{y}$m type theorem for ${\alpha}$-completely positive maps on locally $C^*$-algebras. As an application, we study an extremal problem in the partially ordered cone of ${\alpha}$-completely positive maps on a locally $C^*$-algebra.