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THE STATE SPACE OF A
CANONICAL LINEAR SYSTEM

MEE HYEA YANG

1. Introduction

A fundamental problem is to construct linear systems with given
transfer functions. This problem has a well known solution for unitary
linear systems whose state spaces and coeflicient spaces are Hilbert
spaces. The solution is due independently to B. Sz.-Nagy and C. Foias
(15] and to L. de Branges and J. Ball and N. Cohen [4]. Such a linear
system is essentially uniquely determined by its transfer function. The
de Branges-Rovnyak construction makes use of the theory of square
summable power series with coefficients in a Hilbert space. The con-
struction also applies when the coefficient space is a Krein space (7).

A general construction of unitary linear systems with given transfer
functions was announced without proof by Azizov (3]. A proof was
later supplied by Dijksma, Langer, and de Snoo [10]. The state spaces
and coefficient spaces of these linear systems are Krein spaces.

D. Alpay [1] has shown that a canonical linear system is not uniquely
determined by its transfer function when the state space is a Krein
space. A uniqueness theorem is derived from the work of Sorjonen [14]
when the state space of the linear system has finite Pontryagin index.
In the general case conditions for the uniqueness of a canonical linear
system with given transfer function have been given by de Branges [6].

The present construction of unitary linear systems assumes that
multiplication by the transfer function is an everywhere defined trans-
formation in the space of square summable power series with vector
coefficients. Transfer functions with this property were first considered
by Ch. Davis and C. Foias [9] when the state space is a Hilbert space.
A generalization of their results has been obtained by M. Moller [13]
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when the state space is a Krein space. Our construction is similar to
that of Dijksma, Langer and de Snoo [10] in that it depends on the
same extension theorem of Mark Krein. A canonical linear system
which is conjugate isometric is obtained under a stronger hypothesis,
in which case a uniqueness theorem of de Branges [6] applies.

A vector space K over the complex numbers with a scalar product
(, )x is called a Krein space if there are two spaces X'y and X _ such
that K4 is a Hilbert space with respect to the scalar product {, ),
K is a Hilbert space with respect to the scalar product —(, )x and
K is an orthogonal sum of a Hilbert space K4 and the anti-space of
a Hilbert space K_. In genenal, such decompositions are not unique.
The choice of orthogonal decomposition induces a Hilbert space strong
topology on K. The strong topology of this Hilbert space is called the
Mackey topology of K. The norm of the Hilbert space depends on the
choice of orthogonal decomposition, but two such norms are equivalent.

Let H and C be Krein spaces. A continuous linear transformation

LBy H M
c p) ¥ —9
c c

is called a linear system. The underlying Krein space ‘H is called the
state space and the auxiliary Krein space C is called the coefficient
space or the external space. The transformation A is called the main
transformation. The transformation B is called the mmput transforma-
tion. The transformation C is called the output transformation. The
operator D is called the external operator.

A linear system is said to be contractive if the matrix is contractive,
unitary if the matrix is unitary, and conjugate isometric if the matrix
has an isometric adjoint. The transfer function W(z) of the linear
system is defined by

W(z)=D+:C(I-24)"'B where z € {z: 27} € p(A)}.

A linear system is said to be observable if there is no nonzero element
f of the state space such that CA™ f = 0 for every nonnegative integer
n. Let r be a positive real number. An observable linear system 1is
said to be in a canonical form if the elements of the state space are
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power series with vector coefficients in such a way that the identity
an = r~"CA"f holds whenever f(z) = Y oy an2z™.

If an observable linear system is in a canonical form, then the el-
ements of the state space are power series which converge in some
neighborhood of the origin. For this linear system the main transfor-
mation A(f()) = rlf(z) — f(O)/2, B(c) = r[W(r~z) — W(0)c/,
C(f(z)) = f(0), and D(c) = W(0)c , where W (z) is the transfer func-
tion of the linear system.

The theory of canonical linear systems which are conjugate isometric
is a generalization of the theory of square summable power series with
vector coefficients. Assume that the coefficient space C is a Krein space.
Write C as the orthogonal sum of a Hilbert space C4 and the anti-space
C_ of a Hilbert space. Let J be the operator which is the identity on
C. and which is minus the identity on C_. Let r be a positive real
number. Let

Colz)=A{f: flz)= Z anz",a, €C, Z 12 (Ja,,a,)c < oo}
n=0

n=0

The condition does not depend on the choice of decompositions of C.
The space C.(z) is considered as a Krein space with the unique scalar
product such that

[e o]

<f(z)’ f(Z)>Cr(2) = Z Tzn(“ny a11>C-

n=0

The identity for difference-quotients

r2([f(2) = f(0)]/2, [9(2) — 9(0)]/2)e. ()
= {f(2),9(z))e, ) — (£(0),9(0))e

holds for all f(z) and g(z) in C,(z). These properties imply that the
space C,(z) is the state space of a canonical linear system which is
conjugate isometric and has transfer function identically zero.

The construction of linear systems in Krein spaces made by Ando [2]
makes use of a Krein space generalization of complementation theory

[5].
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THEOREM 1.1. If a Krein space P is contained continuously and
contractively in a Krein space H, then a unique Krein space Q exists,
which is contained continuously and contractively in H, such that the
inequality

<Ca C>7{ < (a,a)p + (ba b)Q

holds whenever ¢ = a + b with a in P and b in Q and such that every
element ¢ of H admits some such decomposition for which equality

holds.

The space Q is called the complementary space to P in H. A unique
minimal decomposition is obtained when equality holds. If

<C,C>7{ = (a’a>7’+<b’b>Q

where ¢ = a + b, then a is obtained from ¢ under the adjoint of the
inclusion of P in H and b is obtained from ¢ under the adjoint of the
inclusion of @ in H.

Complementation theory can be used to give new proofs of theorems
of Dritschel [11] and of Dritschel and Rovnyak [12] which generalize the
commutant lifting theorem to Krein spaces [8].

THEOREM 1.2. Let B(z) be a power series with operator coefficients
such that multiplication by B(z) is a contractive transformation in
C1(2).There exists a Krein space H(B) which is the state space of
a conjugate isometric canonical linear system with transfer function

B(z).

2. Conjugate isometric linear systems
THEOREM 2.1. Assume that

L p\ MM
c p) ¥ —8
C ¢

is a conjugate jsometric linear system with a transfer function W(z).
There is a unique continuous linear transformation of C.(z) into H
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which takes polynomial h(z) = Eﬁ:o a,z" into Zﬁ:o r"A**C*a,,. The
adjoint transformation takes f of H into 3y oo v "CA™fz™.

Proof. See Moller [13].

A property of the formal adjoint of multiplication by B(z) is implicit
in the work of de Branges [6]. A proof is now given as an introduction
to the theory of canonical linear systems.

THEOREM 2.2. Assume that H is the state space of a canonical
linear system which is conjugate isometric and has transfer function
B(z). If h(z) and ¢(z) are polynomials with vector coefficients such
that the formal adjoint of multiplication by B(r~'z) in C,(z) takes h(z)
into g(z), then h(z)— B(r~'2)g¢(z) belongs to H. If h(z) = E::o anz",
then the identity

k
Z P e an)e = (f(2),h(2) — B(r 12)g(2))n
n=0

holds for every element f(z) =30  c,2™ of H.

Proof. Consider Hy = { f: [f(2) — f(0)]/z € H} as a Krein space
with the scalar product

(F(2)s f(2) s = (r*[f(2) = F(O)/2, [f(2) = F(O))/2)m + (£(0), £(O))c.

The space Hj is the state space of a canonical linear system which is
conjugate isometric and has transfer function B;(z) = zB(z). There
is a partially isometric transformation T7: H x C — H; defined by
T1((f(2),¢)) = f(z) + B(r~'z)c. Every element of H; is of the form
f(z) + B(r~'z)c with f(z) an element of H and ¢ an element of C.
Consider Hy = { f(z): [f(2)—= f(0)}/z € H;1} as a Krein space with

the scalar product

(f(2), f(2)ms = r([£(2) = F(O))/ =, [F(2) = F(O))/2)m, + (f(0), F(O))c-

A partially isometric transformation of the Cartesian product H; x C
onto H, exists which is defined by taking a pair consisting of an element
f(2) of Hy and an element c of C into the element f(z)+r~1zB(r~'z)c
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of Hz. Every element of H; is of the form f(z)+ B(r~!z)c with f(z) €
H and ceC.

Define the Krein space

1

Pr={p: p(z) = ) axz*,ax €C)

k=0

with scalar product inherited from C,(z). There is a partial isometric
trasnsformation T : H x P, — H, defind by T(f(2),9(2)) = f(z) +
B(r~1z)g(z). The space H; is the state space of a canonical linear
system which is conjugate isometric and has transfer function By (z) =
2B(z). The space H, is contained continuously in the space H; because
the space H is contained continuously in the space H;.

The construction can be iterated. For any nonnegative integer n
an n-times augmented space H, is defined inductively starting with
Ho = H. Once H,, has been defined, define H,,+1 to be the augmented
space of H,. The space H, is the state space of a canonical linear
system with transfer function B, (z) = 2" B(z2).

Define the Krein space

n-—1

P.={p: p(z) = Zakzk,ak eC}

k=0

with scalar product inherited from C,.(z). A partially isometric trans-
formation 7,,: H x P,, — H,, exists defined T.(f(z).9(2)) = f(z) +
B(r~'z)g(z).

Let h(z) be a polynomial element of C,(z) of degree less than n.
Since h(z) € H,, there exists unique polynomial g(z) € P, such that
(h(2)=B(r7'2)g(z), g(2)) is in the orthogonal complement of the kernel
of T,,. It follows that the identity

(h(z), B(r~'2)p(2))n, = (9(2),p(2))e, (s

holds for every polynomial element p(z) € C,(z). The identity implies
that g(z) is obtained from %(z) under the formal adjoint of multiplica-
tion by B(r~'z) in C,(z).
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By this construction the series h(z) — B(r~!z)g(z) belongs to H and
the identity

(h(2) = B(r™'2)9(2), f(2))n = (h(z), f(2))n,
holds for every element f(z) of H. The identity stated in the theorem

now follows because h(z) is a polynomial of degree less than n.
This completes the proof of the theorem.

3. Krein completion

A construction of Krein spaces results from the spectral theory for
self-adjoint transformations on Hilbert spaces. Let H be a Hilbert space
and J be a self-adjoint transformation on H. Let Ho be the kernel of
J. Let H, be the largest invariant subspace of J, which is orthogonal
to Ho, such that the restriction of J to the subspace has nonnegative
spectrum. Let H_ be the largest invariant subspace of J, which is
orthogonal to Hy, such that the restriction of J to the subspace has
nonpositive spectrum. Then H,, H_ and Hy are orthogonal subspaces
of H which span H. Define 7 to be the orthogonal projection of H onto
the vector span of H4 and H-..

The Krein completion Hy of Hy with respect to J is the essentially
unique Hilbert space, which contains H4 as & dense vector subspace,
such that the identity

<a’b>7¥+ = (J a,b)y+

holds for all elements a and b of H4+. The Krein completion H_ of H_
with respect to J is the essentially unique anti-space of a Hilbert space,
which contains H_ as a dense vector subspace, such that the identity

<(1v,b>7:‘_ = (J (l,b)'}-{_

holds for all elements a and b of H_. The Krein completion H of H is
the essentially unique Krein space which is obtained as the orthogonal
sum of such spaces H4 and H_. The range of = is a dense vector
subspace of H, and the identity

(7r a,m I)>7:[ = <J a,b)H
holds for all elements a and b of H.

A construction of continuous transformations in Krein spaces is due
to Mark Krein [10].
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THEOREM 3.1. Let A and B be Hilbert spaces. Assume that J4 is
a self-adjoint transformation of A into itself, that Jg is a self-adjoint
transformation of B into itself, that U is a continuous transformation
of A into B and that V is a continuous transformation of B into A. Let
A be the Krein completion of A with respect to J4 and let B be the
Krein completion of B with respect to Jg. Let w4 be the projection of
A into A and let ng be the projection of B into B. If the identity

<JB (] a‘yb>3 = (JA (l,V b>A

is satisfied for all elements a of A and b of B, then unique adjoint
transformations U of A into B and V of B into A exist such that the
identities U 74 =75 U and V 75 = m4 V are satisfied.

4. Existence of a unitary linear system

If B(z) is a given power series with operator coefficients, define G(B)
to be the graph of the adjoint of multiplication by B(r~'z) in C,(2).
Consider G(B) as a Hilbert space with the unique scalar product such
that the identity

)
(2

((h (*) (), (A(2), g

9(z)))g(B)
= (J h(z),h(2))c, 5 +(J g

(
)7 >(()

QO

is satisfied.
Define core(B) = {h(z)—B(r~'2)¢g(z): (h(z),9(z)) € G(B)}. Then

core(B) admits a unique scalar product such that th( identity

(h( ) B(7 —l“’ ) h( ) B(T-lz)g(z))rore(ﬂ)
= (h(2),h(2))c. (2 = (9(2), 9(z))e.(2)

is satisfied.
Let

o>

ext Co(z) = {f: f(2) = 3 anz" 0y €C, S 12" (Jan, an)e < o).

- 00 -0
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The condition does not depend of the choice of decompositions of C.
The space C,(z) is considered as a Krein space with the unique scalar
product such that

O

(f(2), f(2))ext Cr(z) = Zr?”(an,an)c.
Assume that multiplication by B(r~!z) is an everywhere defined trans-
formation in C,(z). The space ezt G(B) is the set of pairs (u(z),v(z))
of elements of ext C,(z) such that u(z) — rB(r7'z)z " v(r?z7') and
v(z) — B*(r~1z)z7'u(r?27") belong to C,(z). The space ezt G(B) be-
comes a Hilbert space when considered with the unique scalar product
such that the identity

((U(Z), v(‘Z)), (u(z), 'U(;z)»ert G(B:
= (J w(z),w(2))ext e, (2 + (J 0(2), 0(2))ext ¢,

holds for any (u(z),v(2)) in ext G(B). Then (u(z),z " 'v(z7')) belongs
to ext G(B) for (u(z),r'v(r7%z)) € G(B) and (z7'u(z7"),v(z))) be-
longs to ext G(B) for (v(2),r " u(r~%z)) € G(B*).

Define the space ext core(B) to be the set of pairs

(u(z) —rB(r 12)z 7 u(r?z7Y), —v(z) + rB* (r T 2)z T u(r?2 )
with(u(z),v(z)) € extG(B). A unique scalar product is defined in the
space so that the identity

(u(z) = rB(r12)z 7 o(r?=70), —o(z) + v B*(r Tt 2)e u(r? e 7)),

(u(z) = rB(r~t2)z " o(r22 7Y,

2

—v(z) + 7B (r 7 2)z T ("2 T)) ext core(m)
=(u(z) — rB(r“lz)z_lv(rzz_l),u(z))w, Colz)
+ (v(z) = rB*(r7 )z (2T, v(2))) ewr Cols)
is satisfied. The symmetry and the nondegeneracy of a scalar product
can be easily verified.

Let 7 be a transformation of ext G( B) onto cat core( B) which takes
(u(z),v(z)) into

(u(z) — 'rB(r_lz,)::"lv(rr")z_l)7 —v(z) + V‘B*(v‘_lz)z"lu(r?z—l)),

A construction will now be made of a unitary linear system with
transfer function B(z).
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THEOREM 4.1. Assume that B(z) is a power series with operator
coefficients such that multiplication by B(r~'z) is an everywhere de-
fined transformation in C,(z). Then a Krein space D(B) exists which is
the state space of a unitary linear system with transfer function B(z)
and which contains ext core(B) isometrically.

Proof. The Hilbert space ext G(B) will be denoted G in the proof.
Let Jg be the unique self-adjoint transformation of G into itself such
that the identity

(Jg (u(2),v(2)), (u(2),v(z)))g
=(u(z) —rB(r712) " o(r T, w(2)) eat ¢ (2)
+(v(2) = rB*(r 7 )z 7 u(r 227, v(2)) e . ()
holds for every element (u({z),v(z))of G. Let G be the Krein completion

of G with respect to Jg. Let m be the projection of G into G.
Define a continuous transformation

[g g} GxC— GxC
by:
Alu(2),v(2)) = (r[u(z) = ao]/z, 7 2v(2)),
B(c) = (=rB(0)cz"", —0),
Clu(z),v(z)) = ap
D(e) = B(0)c,
where ag is the constant coefficient in u(z) — B(z)z7'v(27!). Define a
continuous transformation
[g: g] GxC s GXC
by :
A7 ( 1(2),1 ( )= (" zu(2),r[o(z) = bo]s 2],
((u(z),v(2))) = —bo,
C (C) - (Cv~ 1 O)C)

D*(c) = B*(0)c
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where b is the constant coefficient in v(z) — rB*(r~'z)z"tu(r2z~1).
The identities

(T A (u(2),v(2)), (u(=), v(=)g = (Jo (u(=), v(2)), 4*(u(2), o(z))}s,
(Jo B c,(u(2),0(z))g = (¢, B" (u(2),0()))c, and

(C (u(z),0(2));c)e = (Jg (u(2),2(2)),C" c)g

hold for all (u(z),v(z)) € G and c € C. By Theorem 3.1 unique trans-
formations /i A* ¢ — G and B* € : G — C exist such that the
identities A7 = A4, A*x =7« 4* B* 7 =B*and C n = C are
satisfied.

The identities

A m(u(z),0(2)) = (r[f(2) = £(0)]/2,r 2g(z) — B*(r™'2)£(0)),
A* m(u(z),v(2)) = (r7'2f(z) = B(r~'2)g(0), r[g(z) — 9(0)]/2),
T Be= (7‘[B(1'"lz) — B(0)]¢/z,[1 - B*(r_lz)B(O)]c)

B* g (u(2),v(2)) = g(0),and

C g (u(z),v(2)) = £(0)

hold for all (u(z),v(z)) € G, where 7 (u(z),v(z)) = (f(2), 9(2)).

It will be shown that there is no nonzero element k of g such that
CA" k and B*A*" k vanish for every nonnegative integer n. These
conditions imply that k is orthogonal in G to every element of . Since
G is dense in Q by construction, k = 0.

A pair (f(z),¢(z)) of power series f(z) == 3.0  a,z™ and g(z) =
Yo o baz™ s assoc1ated with every element & of by a,, = r "C A" k
and b, = r~"B*A*" k for every nonnegative integer n. The element
k is uniquely determined by a knowledge of these power series. These
power series are

f(z)=w(z)—rB(s 1 «—10(7‘2:"1) and ¢(z)
= —o(z) +rB*(r 7 )z u(r?zTh)

whenever k = ng (u(z),v(z)) for any (u(z),v(z)) in ext G(B).
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The Krein space G can therefore be realized as the state space of an
extended canonical linear system D(B) in such a way that ext core(B)
is contained densely and isometrically in the space.

This completes the proof of the theorem.

A construction of canonical linear systems which are conjugate iso-
metric and which have given transfer functions is due to Yang [16]. A
construction of such linear systems is obtained by the present methods.

THEOREM 4.2. Assume that B(z) is a power series with operator
coeficients such that multiplication by B(r~'z) is an everywhere de-
fined transformation in C,.(z). A sufficient condition for the existence
of a space H(B) is that the set of elements (f(z),g(z)) of D(B) such
that f(z) = 0 is a Krein space which is contained continuously and
isometrically in D(B). The space is contained continuously inC(z). A
partially isometric transformation of D(B) onto H(B) is then defined

by taking (f(z),g(z)) into f(z).
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