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AN EXISTENCE OF LINEAR SYSTEMS
WITH GIVEN TRANSFER FUNCTION

MEEHYEA YANG

A vector space K with scalar product < .,. > is called a Krein space
if it can be decomposed as an orthogonal sum of a Hilbert space and an
anti-space of a Hilbert space. The space K induces a Hilbert space K ; in
the inner product < .,. >x,=< .,. >x, where J? = I. The eigenspaces
of J are denoted by IC}’, which is a Hilbert space and K7, which is an
anti-space of a Hilbert space. Then the Krein space K is the orthogonal
sum of K} and KJ. Such a decomposition of X is called a fundamental
decomposition. In general, fundamental decompositions are not unique.
The norm of the Hilbert space depends on the choice of a fundamental
decomposion, but such norms are equivalent. The topology generated
by these norms is called the strong or Mackey topology of K. It is used
to define all topological notions on the Krein space X with respect to
this topology.

The Pontryagin index of a Krein space is the dimension of the anti-
space of a Hilbert space in any such decomposition. The dimension
does not depend on the choice of orthogonal decomposition. A Krein
space is called a Pontryagin space if it has finite Pontryagin index.

A fixed Krein space C is used as a coefficient space. A vector is always
an element of this space. An operator is a continuous transformation of
vectors into vectors. If bis a vector, b~ is the linear functional on vectors
defined by the scalar product b~a = (a, b)¢ for every vector a. If a and
b are vectors, then ab™ is the operator defined by (ab™)c = a(b”¢) for
every vector c. A bar is also used for the adjoint of an operator.

. . . |4 B ) .
A linear system is a matrix C D of continuous transformations

on the Cartesian product Krein space H x ( realized as a space of
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column vectors. The underlying Krein space H is called the state space
and the auxiliary Krein space C is called the coefficient space or the
external space.

A linear system 1s sald to be contractive if the matrix is contractive,
unitary if the matrix is unitary, and conjugate isometric if the matrix
has an isometric adjoint. A linear system is said to be observable if
there 1s no nonzero element f of the state space such that CA™f =0
for every nonnegative integer n. An observable linear system is said to
be in a canonical form if the elements of the state space are power series
with vector coefficients in such a way that the identity ¢,, = C A™ f holds
whenever f(z) = Y o0 anz™

If an observable linear system is in a canonical fcrm, then the el-
ements of the state space are power series which converge in some
neighborhood of the origin. For this linear system the main trans-
formation A is the difference-quotient transformation, which takes f(z)
into [f(z)— f(0)]/z. The output transformation C takes f(z) into f(0).
The input transformation B takes ¢ into [W(z) — W(0) ]c'/z for some
power series W(z) with operator coeflicients which converges in a neigh-
borhood of the origin. The external operator D is W(0). The power
series W(z) 1s called the transfer function of the linear system.

The theory of canonical linear systems which are conjugate isometric
is a generalization of the theory of square summable power series with
vector coeflicients. Assume that the coefficient space C is a Krein space.
Write C as the orthogonal sum of a Hilbert space C4 and the anti-space
C- of a Hilbert space. Let J be the operator which is the identity on
C+ and which is minus the identity on C... The space C(z) of square
summable power series is the set of power series f(:) = Y .o a,z"
with coefficients in C such that Y 0. a; Ja, is finite. The condition
does not depend on the choice of decompositions of C. The space C(z)
is considered as a Krein space with the unique scalar product such that

(f(2), f(2)) e Zan‘an-

The construction of linear systems in Krein spaces made by Ando [1]
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makes use of a Krein space generalization of complementation theory
[3,4].

THEOREM 1. If a Krein space P is contained continuously and con-
tractively in a Krein space H, then a unique Krein space Q exists,
which is contained continuously and contractively in ‘H, such that the
inequality

<C, C)’H < A{a, a)'P + (b, b)Q

holds whenever ¢ = a + b with a in P and b in Q and such that every

element ¢ of H admits some such decomposition for which equality
holds.

The space Q is called the complementary space to P in H. A unique
minimal decomposition is obtained when equality holds. If

(c,e)n = (a,a)p + (b, h)g

where ¢ = a + b, then a is obtained from ¢ under the adjoint of the
inclusion of P in H and b is obtained from ¢ under the adjoint of the
inclusion of Q in H.

Complementation theory can be used to give new proofs of theorems
of Dritschel [6] and of Dritschel and Rovnyak [7] which generalize the
commutant lifting theorem to Krein spaces [5].

Let W(z) be a power series with operator coefficients such that multi-
plication by W(z) is a contractive transformation in C(z). A construc-
tion of a canonical linear system which is contractive and conjugate
isometric with W(z) as its transfer function cen be made using corple-
mentation theory. Multiplication by W(z) in 2(z) is continuous by the
closed graph theorem. The range M(W) of raultiplication by W(z) is
considered as a Krein space with the unique scalar product such that
multiplication by W(z) acts as a contractive partial isometry of C(z)
onto M(W). The state space of the canonical linear system which is
contractive and conjugate isometric and which has transfer function
W(z) is the complementary space H(W) to M(W) in C(2).

The formal adjoint of multiplication by W(z ) in C(z) is a transforma-
tion which takes polynomials into polynomials without raising degree.
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We write W(z) = 3 o7, wnz". The formal adjoint ma»ss f(z) into g
whenever f(z) = 3 00 janz™ and g(z) = > oo, bn2z™ are polynom’
with vector coefficients such that b, = E:ozo W, Gnytr fOr every nonn
ative integer r.

The Caratheodory-Fejer extention theory [2] can be nsed to constr
a Krein space.

Define power series f(z) and g(z) to be r-equivalent for a nonnegat
integer r if the power series f(z) — g(z) is divisible by 2. Let C,
be the Hilbert space of r-equivalence classes of power series with vec
coefficients, the scalar product being defined in C,(z) so that ev
polynomial of degree less than r has same norm in Cr(z) as in C(z)
W {(z) is a given power series with operator coefficients, define G, (W
be the graph of the adjoint of multiplication by W(z)in C,(z). Consi
G(W) as a Hilbert space with the unique scalar produ.ct such that
identity

((h(z),9(2)),(h(2),9(2)))g,(w)
= (T W) h(2erio) + (T 9(2),9(Ne, )

1s satisfied.

Define core,(W) to be the space of power series w.th vector cot
clents of the form h(z) — W(z)g(z) such that (h(z),g(z)) is in G,(}
Then core, (W) admits a unique scalar product such that the ident

{h(2) = W(2)g(2), h(2) — W(2)g(2))core, w)
= (h(z)ah(Z»Cr(z) '_ (g(:Z),g(Z))C'_(z)
is satisfied.

A construction of a Krein space can be made using the complem
tation theory.

THEOREM 2. A Krein space H,.(W) exists which ccntains core,|
isometrically and is contained continuously in C,.(z).

Proof. Define the Mackey topology of C,(z) by

(J+TpJT})f(2),9(2))e. ()
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where T, is multiplication by W(z) as a transformation in the space
Cr(z). A transformation of H in the space C.(z} into itself exists which
is self-adjoint with respect to this Hilbert space scalar product such

that
(J+ T ITT)H f(2),9(2))c.()
= ((I - TrT:)f(z)v g(z))C,.(z)

is satisfied. By the spectral theorem for self-adjoint transformations,
there are unique closed subspaces My, My and M_ which are invari-
ant under the action of H such that the restriction of H to My has
nonnegative spectrum, My is the kernel of H, the restriction of H to
M_ has nonpositive spectrum and C,(z) is orthogonal sum of M,
My and M _ for the Hilbert scalar product. The space core,.(W) is the
orthogonal sum of a space core} (W), which is the image of M4 un-
der I — T, T}, and a space core (W), which is the image of M_ under
I-T,T;. By the complementation theory for a self-adjoint transforma-
tion, a unique Hilbert space H;} (W) exists, which contains core} (W)
isometrically and which is contained continuously in the space C,(z)
such that the adjoint of the inclusion of H} (W) in C,(z) coinsides with
the adjoint of the inclusion of core} (W) in the space Cr(z). A unique
Hilbert space H_ (W) exists, which contains core; (W) isometrically
and which is contained continuously in the space Cr(2z) such that the
adjoint of the inclusion of H; (W) in C,(z) coincides with the adjoint
of the inclusion of core; (W) in the space C,(z). A unique Krein space
Hr(W) exists, which is contained continuously in C,(z) and which is
the orthogonal sum of H}(W) and H;(W). Tkis completes the proof
of the theorem. 0O

Let A(z) be a power series with operator coefficients such that mul-
tiplication by A(z) is contractive in the Krein space C(z) and A(0) is
invertible. There exists the Krein space H(A) which is the state space
of a canonical conjugate-isometric linear system with transfer function
A(z). Consider the power series B(z) = (A(z))~!. Construct a Krein
space H(B) which is the state space of a canonical linear system whose
transfer function is B(z).

Let T, be multiplication by B(z) as a transformation in the space
C/(z) and S, be multiplication by A(z) as a transformation in the space
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Cr(2).
A characterization of the Krein space is the consequence of Theorem

2.

THEOREM 3. The Krein space H,(B) is the set of r-equivalence of
power series with vector coefficients of the form B(z)f(z) where f(z)
is in the space H,(A). The identity

(B(2)f(2), B(2) f(2))n,(B) = —(f(2), f(2))n,(4)

holds for every element f(z) in H,(A).

Proof. Let f(z) be in core,(A). There exists h(z) in the space C,(z)
such that f(z) = (I — 5,5})h(z). The identity

T, f(2) = T.(I — $,52)h(z)
= T, h(z) — S*h(z)
= T,T*S*h(z) — S*h(z)
= (I - T,T*)S*h(2)

implies that B(z)f(z) is an element of H,(B) for every element f(z) in
H,(A) since core,(A) is contained isometrically and densely in H,(A).

The identity

(I = T, T )Yh(z) = T, S h(z) — T, T} h(z)
= T,(S.S: Ty h(z) - T} h(2))
= =T (I - S, S7)T7h()

implies that every element in the space H,(B) can be written by B(z)f(z)
for some f(z) in the space H,(A) since core,(B) is contained isometri-

cally and densely in H,(B).

Let f(z) be an element of core,.(A). There exists a power series h(z)
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in the space C,(z) such that f(z) = (I — S,S5})h(z). The identity
(T f(2), T f () m, ) = (I = TLIT)STR(2), (1 = T, T7) S h(2)}a, (B)
= (I =T, T})S57h(2), 57 h(2)}e. ()
= (S7h(2), STh(2))c, (21 — (Trh(z2), S7A(2))c, (2)
= (S757R(2), M(2))c, () = (H(2), B(2))e. (»)
= —{(I = 5:57)(z),h2))c, (2
= —{f(2), f(2))n.(a)

is satisfied. This completes the proof of the tlheorem. O

Let 'H be the state space of a canonical linear system which is con-
jugate isometric with transfer function W(z). The augumented space
H' is the set of power series f(z) with vector coefficients such that
[f(z) = f(0)]/z belongs to H. Equivalently tl.e elements of H’ are the
power series of the form ¢+ 2z f(z) with f(z) in H and c in C. The space
‘H' becomes a Krein space when considered with the Cartesian scalar
product Krein space H x C. This is the unique scalar procduct for
which the identity for the difference-quotients

<f(Z), f(z)>7f'
= ([f(z) = F(0))/z,[f(2) = £(0))/2)n + £(0)™ £(0)

holds for every element f(z) in H’. In this nctation the matrix of the
canonical linear system with the state space H and transfer function
W{z) is isomorpic to the transformation of #{' into itself which takes
flz) into [f(z) — f(0)]/z + W(z)f(0). The transformation has an iso-
metric adjoint by hypothesis. An equivalent condition is that a partially
isometric transformation of the Cartesian product Krein space H x C
onto ‘H' is defined by taking a pair (f(z),c) into f(2) + W(z)c. Ex-
plicitly this means that H is contained continulusly in A’ and that
multiplication by W(z) is a continuous transformation of C into H'.

Every element of H' is of the form f(z)+W(z)c with f(z) an element
of H and ¢ an element of C. The identity

(f(2) + W(z)e, f(2) + W(2)e)ne
={f(z2) f(2))n+cc
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Lolds if and only if the identity (f(z), W(z)k)n = k™ ¢ holds for every
vector k such that W(z)k belongs to H.

An existence of the state space of a canonical conjugate-isometric
linear system can be shown.

THEOREM 4. There is a partial isometry from the Cartician product
Krein space H,—1(B) x C onto H,(B') with B'(z) = 2B(z) which takes
(f(2),¢) into f(z)+ B(z)ec.

Proof. Let f(z) be in H,_,(B). f(z) can be written as f(z) =
B(z)g(z) for some g¢(z) in H,_;(A). By complementation theory the
identity

(9(2) + A(2)a, 9(2) + A(z)a)n, (a1
= (g(z)ag(z»')‘lr_l(A) ta a

holds if, and only if, the identity
(9(2), A(2)b) 3, _,(a) = b7a

holds for every vector a such that A(z)b belongs to H” “Y(A). It implies
that the identity

(f(2) + B(2)c, f(2) + B(z)c)n, (1)
=([f(z) = £(0))/z + [B(z) — B(0)]c/=,
[f(2) = f(0))/2 + [B(2) — B(0)lc/2)n,_,(8)
+ (£(0) + B(0)e)~(£(0) + B(0)c)
== (9(2) = A(2)(£(0) + B(0)c), ¢(2) — A(z)(f(0) + B(0)e)) 2, _, ()
+(f(0) + B(0)c)™(f(0) + B(0)c)
=—(9(2),9(2))3, _,ca) + ¢
=(f(z), f(2))m, By + "¢

is satisfied whenever

(f(2), B(‘Z)k>u,_,(a) =k~ ¢
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for every B(z)k in H""!'(B). This completes the proof of the theo-
rem. O

Let ‘H(B) be the set of a power series f(z) such that f(z) is r-
equivalent to an element in the space H,(B) for every r. The space

H(B) becomes a Krein space when considered with the unique scalar
product

(f(2), f())nm) = }i{&(f(z),f(z))ﬂ,(m-

Then the Krein space H(B) is the state space of a canomical linear
system which is conjugate isometric with transfer function B(z).
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