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Abstract: A new approach to design of a discrete-time robust H∞ filter in finite horizon case is proposed. It is shown that

robust H∞ filtering problem can be cast into the minimization problem of an indefinite quadratic form, which can be solved by

implementing the Kalman filter defined in Krein space. The proposed filter is readily derived by simply augmenting the state

space model and has the robustness property against the parameter uncertainties of a given system.
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1. Introduction

The optimal results in the celebrated Wiener and/or Kalman

filters are based on the minimization of the L2 or H2 norm

of the corresponding estimation error. These filters require

two critical assumptions: the system model is perfect; the

spectral properties about the exogenous noises are exactly

known[1], [2]. However these assumptions limit the applica-

tion of the filters in practice where only approximated sys-

tem models are available and the statistics of the exogenous

signals are not fully known or unavailable. Those limita-

tion recently led many researchers to study H∞ filtering al-

gorithm, which is more robust against unknown exogenous

noises and less sensitive to parameter variation or uncer-

tainty. In H∞ setting, the exogenous signals are assumed to

be energy bounded rather than Gaussian. The H∞ filter de-

sign object is to minimize the H∞ norm of the system, which

means worst-case estimation error gain to exogenous signals.

This gives the H∞ filter another name, minimax estimation.

In other words, H∞ filter guarantees the robustness against

all possible disturbances in worst-cases.

There have been several approaches to H∞ filter design:

ARE[3], [4], [5], [6], interpolation[7], polynomial equa-

tion[8], game-theoretic[9], [10] and, more recently, LMI ap-

proaches[11], [12]. However, most of the works mentioned

above require that the system model is precisely known,

apart from the exogenous noises. Even though H∞ filter

itself is robust against the uncertainties of system model be-

cause no assumption on the noises are needed in the design

of nominal H∞ filter. Those uncertainties are interpreted

as exogenous noises, and there exist a limitation to consider

the parameter uncertainties of system as exogenous noises.

Moreover, it is pointed out that the nominal H∞ filter is not

robust to the parameter variations of the system[5], [13].

To get improvement of performance, the robustness of H∞

filters against the parameter uncertainty is taken into ac-

count. Several results have been obtained on the robust H∞

filtering [3], [5], [11]. These works deal with so-called norm

bounded uncertainty in state and/or in output matrices, and

results are obtained by using ARE. The ARE approach for

both H∞ [3], [5] and H2 [14], [15] filters involves the con-

version of a robust filtering problem into a scaled filtering

problem, which transforms the uncertainty into a scaling pa-

rameter. Recently, the robust H∞ filtering technique for a

wider class of parameter uncertainty described by the inte-

gral quadratic constraints (IQC’s) has been addressed[11],

which uses LMI and an S- procedure[16].

In this paper a new robust H∞ filter is proposed for the

discrete-time system with norm-bounded parametric uncer-

tainties. The uncertainties and exogenous disturbances are

described by the energy bound constraint, i.e., sum quadratic

constraints (SQC’s). It is shown that the SQC’s can be con-

verted into an indefinite quadratic cost function to be mini-

mized in an indefinite metric space, known as a Krein space,

and it is found that the Kalman filter designed in the Krein

space[18] is a solution of the minimization problem. After

introducing a Krein space state-space model, which includes

the uncertainty, one can easily write a robust version of the

Krein space Kalman filter by modifying the measurement

matrix and the variance of measurement noises in the orig-

inal Krein space Kalman filter. Since the resulting robust

Kalman filter has the same recursive structure as a conven-

tional Kalman filter has, a robust filtering scheme can be

readily designed via the proposed method. Moreover, the

condition for a minimum or existence of the solution of H∞

problem can also be expressed in terms of quantities easily

related to the basic Riccati equations of the Kalman filter.

Therefore, it is emphasized that the existing robust H∞ fil-

tering problems can be easily interpreted and solved by con-

ventional Kalman filter algorithm. The key idea of applying

Krein space estimation theory to robust filtering problem

and its application to robust H2 (Kalman) filter design are

represented in our earlier work[19], [20]. Note that only a

posteriori filter is presented in this paper. Further results on

a priori filter will be given in later work.

2. H∞ Filtering Problem

Consider a discrete-time system represented by the following

state-space model











xj+1 = Fjxj + Gjuj

yj = Hjxj + vj

zj = Ljxj

(1)



where, Fj ∈ Cn×n, Gj ∈ Cn×m, Hj ∈ Cp×n, Lj ∈ Cr×n are

given matrices, x0 ∈ Cn is the initial state, yj ∈ Cp is the

system output, zj ∈ Cr is an arbitrary linear combination

of the states which should be estimated, uj ∈ Cm, vj ∈ Cp

are the uncertainty inputs which contain the energy bounded

process and measurement noises. Let žk|k denote the filtered

estimate of zk with given observations {y0, y1, · · · , yk}. Then

the filtered error is ef,k = žk|k − zk. if we let T be a transfer

function that maps the uncertain inputs to the estimation

errors mentioned above, the H∞ norm of T is defined as the

RMS gain of the matrix, that is,

‖ T ‖∞, sup
u 6=0

‖ T u ‖rms

‖ u ‖rms

= sup
u 6=0

‖ T u ‖2

‖ u ‖2

, (2)

where ‖ u ‖2 is the L2 norm of a sequence ui, i.e., ‖ u ‖2
2,

∑∞
i=1

u∗
i ui. Thus, H∞ norm indicates the maximum energy

gain from an input to an output. According to the filtered

error, the level-γ suboptimal robust H∞ filtering problem is

given below.

Problem 1: (Level-γ H∞ A Posteriori Filtering Prob-

lem) For a given scalar γf > 0, find an estimation strategy

žk|k = Ff (y0, y1, · · · , yk) that achieves ‖ Tk(Ff ) ‖2
∞< γ2

f . In

other words, find a strategy that achieves

sup
x0,u∈l2,v∈l2

k
∑

j=0

e∗f,jef,j

x̄∗Π−1

0 x̄ +
k
∑

j=0

u∗
j uj +

k
∑

j=0

v∗
j vj

< γ
2
f , (3)

where x̄ = x0 − x̂0, and Π0 is a given positive-definite sym-

metric matrix which indicates how confident we are about

the closeness of the initial guess x̂0 to x0.

3. Robust H∞ Filtering Problem

In this section, H∞ filtering scheme is extend to the case that

system has certain norm bounded parameter uncertainty un-

certainties. The uncertainties are described by SQC, which

allows us to have indefinite quadratic form. Moreover, an-

other indefinite quadratic form is derived from H∞ norm

constraint to check positivity condition. The minimum point

of the indefinite quadratic form from the SQC will be found

by Krein space robust H∞ filter. The robust H∞ filters is

based on the following uncertain discrete-time system,


















xj+1 = Fjxj + Gjuj

yj = Hjxj + vj

zj = Ljxj

sj = Kjxj

(4)

where every quantity is given in (1) except the given uncer-

tain matrix Kj ∈ Cq×n and the uncertainty output sj ∈ Cq.

3.1. Problem formulation

Referring to the measurement equation, yj = Hjxj + vj , in

(4), the inequality in Problem 1 implies that for all nonzero

x0 and {uj , vj}
k
j=0

k
∑

j=0

(žj|j − zj)
∗(žj|j − zj)

x̄∗Π−1

0 x̄+
k
∑

j=0

u∗
j uj +

k
∑

j=0

(yj−Hjxj)∗(yj−Hjxj)

< γ
2
f . (5)

With assumption that x̂0 = 0, the above inequality of H∞

norm constraint with level γf gives the following indefinite

quadratic form

Jf1,k(x0, u0, . . . , uk, y0, . . . , yk) = x∗
0Π

−1

0 x0

+
∑k

j=0
uj

∗uj +
∑k

j=0
(yj−Hjxj)

∗(yj−Hjxj)

−
∑k

j=0
γ−2

f (žj|j − zj)
∗(žj|j − zj)

(6)

which satisfies

Jf1,k(x0, u0, . . . , uk, y0, . . . , yk) ≥ 0. (7)

Note that the above quadratic form is a straightforward re-

statement of (5), and it is always true for all suboptimal H∞

a posteriori filters with level γf .

Let ε be a given positive constant; then the uncertainty of the

system in (4) is described by the following energy constraint,

i.e., SQC

x̄
∗
0Π

−1

0 x̄0+
k

∑

j=0

{uj
∗
uj+vj

∗
vj}−

1

γ2
f

k
∑

j=0

e
∗
f,jef,j ≤ ε+

k
∑

j=0

‖ sj ‖2
.

(8)

Also letting x̂0 = 0, we can define another indefinite

quadratic form from SQC as follows

Jf2,k(x0, u0, . . . , uk, y0, . . . , yk) = x∗
0Π

−1

0 x0

+
∑k

j=0
uj

∗uj +
∑k

j=0
(yj−Hjxj)

∗(yj−Hjxj)

−γ−2

f

∑k

j=0
(žk|k − zk)∗(žk|k − zk) −

∑k

j=0
‖ sj ‖2 .

(9)

Referring to the given system equations in (4), we have the

following matrix form of Jf2,k.

Jf2,k(x0, u0, . . . , uk, y0, . . . , yk) = x∗
0Π

−1

0 x0 +
∑k

j=0
uj

∗uj

+
∑N

j=0













yj

0

žj|j






−







Hj

Kj

Lj






xj







∗

R













yj

0

žj|j






−







Hj

Kj

Lj






xj






,

(10)

where R = diag(I,−I,−γ−2I), which is indefinite.

The object is to find the state estimates used to calculate the

minimum point of Jf2,k. Also note that Jf2,k equals to Jf1,k

when the uncertainty is neglected, that is, Jf1,k = Jf2,k|K=0.

Since the H∞ norm constraint implies quadratic form Jf1,k

must be positive (see (6)–(7)), the minimum point of Jf1,k

must be positive, too. We then have the following problem

statement.

Problem 2: (Robust A Posteriori H∞ Filtering Prob-

lem) Given uncertain system (4) with SQC (8), a robust a

posteriori H∞ filtering problem is to find the estimates used

to calculate the minimum point of the indefinite quadratic

function Jf2,k(x0, u0, . . . , uk, y0, . . . , yk). Therefore, the fol-

lowing two conditions must be satisfied.

(a) Minimum Condition : Jf2,k has a minimum with respect

to {x0, u0, · · · , uk}.

(b) Positivity Condition : The {žj|j}
k
j=0 can be chosen such

that the minimum value of Jf2,k|K=0, equal to minimum of

Jf1,k, is positive, i.e., min Jf2,k|K=0 = min Jf1,k > 0.

3.2. Equations of robust a posteriori H∞ filter

The solution to Problem 2 is given blow. Note that the so-

lution has the same structure as the H∞ filtering solution in



[4], except the augmented matrices to represent uncertain-

ties.

Theorem 1: (Krein Space Robust A Posteriori H∞ Fil-

ter) For a given system in (4) and γ > 0, if the
[

Fj Gj

]

have full rank, then a suboptimal robust H∞ filter that

achieves ‖ Tk(Ff ) ‖2
∞< γ2

f exist if, and only if,

P
−1

j +H
∗
j Hj−K

∗
j Kj−γ

−2
L

∗
j Lj > 0, j = 0, 1, · · · , k (11)

where P0 = Π0 and Pj satisfies the Riccati recursion

Pj+1 = FjPjF
∗
j +GjG

∗
j−FjPj







Hj

Kj

Lj







∗

R
−1

e,j







Hj

Kj

Lj






PjF

∗
j (12)

with

Re,j =







I 0 0

0 −I 0

0 0 −γ2I






+







Hj

Kj

Lj






Pj







Hj

Kj

Lj







∗

, (13)

where Pj , Pj|j−1. In this case, one possible level-γ H∞

filter is

žj|j = Lj x̂j|j ,

where the measurement-updated estimate x̂j|j is recursively

obtained as

x̂j+1|j+1 = Fj x̂j|j + Ks,j+1

[

yj+1 − Hj+1Fj x̂j|j

−Kj+1Fj x̂j|j

]

, (14)

where

Ks,j+1 =Pj+1

[

Hj+1

Kj+1

]∗([

I 0

0 −I

]

+

[

Hj+1

Kj+1

]

Pj+1

[

Hj+1

Kj+1

]∗)−1

(15)

An alternative form, i.e., the predicted form of this filter is

x̂j+1|j = Fj x̂j|j−1 + FjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1 [

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

žj|j = Lj x̂j|j−1 + LjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1 [

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

(16)

3.3. Proof of theorem 1

To apply the Krein space projection method in [17] to the

deterministic minimization problem given in Problem 2, we

can introduce the Krein space state-space equations corre-

sponding to the indefinite quadratic form J2,k(x0, u, y) for

the robust H∞ filtering problem as follows


















xj+1 = Fjxj + Gjuj






yj

0

žj






=







Hj

Kj

Lj






xj + vj

(17)

with the Gramian

<







x0

uj

vj






,







x0

uk

vk






>=







Π0 0 0

0 Iδjk 0

0 0 Rδjk






. (18)

where R = diag(I,−I,−γ−2I). Now, we can derive the

equations for a suboptimal robust H∞ filter by applying the

Krein space Kalman filter equations in [18] to the Krein space

system given in (17)–(18). According to Problem 2, the es-

timates given by the robust H∞ filter also satisfy Minimum

Condition and Positivity Condition.

Conditions for a minimum

Comparing the matrices in (17)–(18) with those of the Krein

space Kalman filter in [18] yields the following correspon-

dence

Qj 7→ I, Rj 7→ diag(I,−I,−γ
2
I), Hj 7→

[

Hj Kj Lj

]T

.

(19)

Considering the above correspondence with the Riccati re-

cursion in [18], we have the following Riccati recursion

Pj+1 = FjPjF
∗
j + GjG

∗
j − FjPj







Hj

Kj

Lj







∗

R
−1

e,j







Hj

Kj

Lj






PjF

∗
j ,

(20)

which is Eq. (12). Since we can use any conditions for a min-

imum given in [18], the positivity condition for a minimum

is selected.

Lemma 1: (Positivity Condition for a Minimum) If
[

Fk Gk

]

is full rank for all k, to have

P
−1

j +







Hj

Kj

Lj







∗ 





I 0 0

0 −I 0

0 0 −γ2I













Hj

Kj

Lj







= P
−1

j + H
∗
j Hj − K

∗
j Kj − γ

−2
L

∗
j Lj > 0, (21)

which is the minimum condition for J2,k and identical to

(11).

We can also use the alternative minimum condition given in

[18], which lead us to the following.

Lemma 2: (Inertia Condition for a Minimum) The indef-

inite quadratic form J2,k has a minimum, if and only if,

R =







I 0 0

0 −I 0

0 0 −γ2I






and Re,j = R +







Hj

Kj

Lj






Pj







Hj

Kj

Lj







∗

have the same inertia for all 0 < j < k.

Using a block triangular factorization of Re,j , we can also

have the following result.

Corollary 1: (Alternative Condition for a Minimum)

The condition of Lemma 2 is equivalent to

Ψy , I + HjPjH
∗
j > 0 (22)

Ψs , −I + Kj(P
−1

j + H
∗
j Hj)

−1
K

∗
j < 0 (23)

Ψz , −γ
2
I+Lj(P

−1

j +H
∗
j Hj−K

∗
j Kj)

−1
L

∗
j < 0 (24)

Construction of the robust H∞ a posteriori filter

We still need to find the state estimates that satisfy the

Positivity Condition in Problem 2. To find the estimates, we

begin with the minimum point of J2,k. According to [18],

the minimum value of J2,k is given by

min J2,k =
k

∑

j=0

e
∗
j R

−1

e,j ej .



From Re,j in Lemma 2, the minimum value can be expressed

by

min J2,k =
k

∑

j=0

E
∗
j R

−1

e,jEj , (25)

where Re,j=







I+HjPjH
∗
j HjPjK

∗
j HjPjL

∗
j

KjPjH
∗
j −I+KjPjK

∗
j KjPjL

∗
j

LjPjH
∗
j LjPjK

∗
j −γ2I+LjPjL

∗
j







and

Ej =
[

yj − ŷj|j−1 −Kj x̂j|j−1 žj|j − ẑj|j−1

]T

where ŷj|j−1 = Hj x̂j|j−1, and ẑj|j−1 = Lj x̂j|j−1.

Using the LDU block triangular factorization of the Re,j we

may rewrite the above as

min J2,k =
k

∑

j=0

Ē
∗
j







Ψy 0 0

0 Ψs 0

0 0 Ψz







−1

Ēj (26)

=
k

∑

j=0

(yj − ŷj|j−1)
∗Ψ−1

y (yj − ŷj|j−1)

+
k

∑

j=0

s
∗
j|jK

∗
j Ψ−1

s Kjsj|j

+
k

∑

j=0

(žj|j − ẑj|j)
∗Ψ−1

z (žj|j − ẑj|j), (27)

where

Ēj =
[

yj − ŷj|j−1 −Kjsj|j žj|j − ẑj|j

]T

and Ψy, Ψs and Ψz are given in Corollary 1, and we have

defined

sj|j , PjH
∗
j (HjPjH

∗
j + I)−1(yj − ŷj) + x̂j (28)

ẑj|j , ẑj|j−1 + LjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

. (29)

Now, we have to choose the estimates žj|j that satisfy the

Positivity Condition. There can be many choices of žj|j such

that min J2,k|K=0 = min J1,k > 0. Referring to corollary 1,

the second summation term and the third summation term

in (27) are negative definite. If we neglect the uncertainties,

i.e., K = 0, the second term is diminished. Moreover, the

third term can be diminished by choosing žj|j equal to ẑj|j ,

that is,

žj|j = ẑj|j = Lj x̂j|j

= Lj x̂j|j−1 + LjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

,

(30)

where xj|j−1 can be obtained from the Krein space Kalman

filter. With the above choice of žj|j ,

min J2,k|K=0 = min J1,k

=
k

∑

j=0

(yj − ŷj|j−1)
∗Ψ−1

y (yj − ŷj|j−1) > 0, (31)

which satisfies the Positivity Condition.

Using the predicted form of the Krein space Kalman filter in

[18] allows us to write

x̂j+1|j = Fj x̂j|j−1 + Kp,j







yj − Hj x̂j|j−1

−Kj x̂j|j−1

žj|j − Lj x̂j|j−1






(32)

žj|j = Lj x̂j|j−1 + LjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

, (33)

where Kp,j = FjPj

[

H∗
j K∗

j L∗
j

]

R−1

e,j . Let

Φ = LjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1

(34)

and substitute the second of the above equations into the

first to obtain the followings

x̂j+1|j = Fj x̂j|j−1+FjPj







Hj

Kj

Lj







∗

R
−1

e,j











yj − Hj x̂j|j−1

−Kj x̂j|j−1

Φ

[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]











= Fj x̂j|j−1+FjPj







Hj

Kj

Lj







∗

R
−1

e,j

[

I 0

Φ I

]







[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

0







(35)

The block triangular factorization of Re,j , which can be ob-

tained by using the formulas in Appendix, is given by

R
−1

e,j =







1 −Ψ−1
y HjPjK

∗
j ×

0 1 ×

0 0 1













Ψ−1
y 0 0

0 Ψ−1
s 0

0 0 Ψ−1
z













1 0 0

−KjPjH
∗
j Ψ−1

y I 0

∆l ∆s I






(36)

where Ψy, Ψs and Ψz are given in corollary 1; ∆l and ∆s can

be obtained through Appendix; × denotes irrelevant entries.

In addition, using 2 × 2 block triangular factorization, we

can find that Φ in (34) has the following relation

Φ =
[

−∆l −∆s

]

. (37)

With the above relation, replacing the result for R−1

e,j into

(35) and some tedious works allow us to rewrite the recursion
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Fig. 1. Singular value plot : nominal case(∆ = 0)

for x̂j as

x̂j+1|j = Fj x̂j|j−1 + FjPj







H∗
j Ψy + (−H∗

j ΨyHjPjK
∗
j + K∗

j )Ψ−1
s (−KjPjH

∗
j Ψy)

(−H∗
j ΨyHjPjKj + K∗

j )Ψ−1
s

×







T







[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

0






(38)

= Fj x̂j|j−1+ FjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

(39)

Therefore, the recursion in (33) can be rewritten as

x̂j+1|j = Fj x̂j|j−1 + FjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1 [

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

(40)

žj|j = Lj x̂j|j−1 + LjPj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1 [

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

(41)

which is equal to (16).

Since žj|j = ẑj|j = Lj x̂j|j , from the second equation of (33),

we can derive the following definition

x̂j|j , x̂j|j−1 + Pj

[

H∗
j K∗

j

]

([

I 0

0 −I

]

+

[

Hj

Kj

]

Pj

[

Hj

Kj

]∗)−1[

yj − Hj x̂j|j−1

−Kj x̂j|j−1

]

. (42)

Increasing all of the time index in (42) and using x̂j+1|j =

Fj x̂j|j , a recursion for x̂j|j is readily obtained as

x̂j+1|j+1 = x̂j+1|j + Pj+1

[

H∗
j+1 K∗

j+1

]

([

I 0

0 −I

]

+

[

Hj+1

Kj+1

]

Pj+1

[

Hj+1

Kj+1

]∗)−1[

yj+1 − Hj+1Fj x̂j|j

−Kj+1Fj x̂j|j

]

(43)

which is equal to (14).
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Fig. 2. Singular value plot : uncertain case(∆ = 1)

4. Numerical Example

In order to demonstrate the properties of the proposed H∞

filter, consider the following discrete-time system

xj+1 =

[

0.5079 0.7594

−0.7594 0.2801

]

xj

+

[

0

0.3261

]

∆j

[

0 0.92
]

+

[

0.4921

0.7594

]

uj (44)

with velocity measurement described by

yj =
[

0 1
]

xj + vj (45)

where it is desired to estimate

zj =
[

1 0
]

xj (46)

and it is also assumed that the exogenous noises are energy

bounded signals. The parameter uncertainty ∆j satisfies

‖ ∆j ‖≤ 1.

The performance of the nominal Kalman, the nominal H∞

and the proposed robust H∞ filters is compared by the sin-

gular value plot of their error systems in steady-state. For a

given γ = 1.5, the simulation results are shown in Fig.1 and

Fig.2 for the nominal(∆j = 0) and the uncertain(∆j = 1)

cases, respectively. It is shown that the peak magnitude of

energy gain of the proposed robust H∞ filter is lower than

those of other nominal filters in worst-case. Of course, the

nominal performance of the proposed robust H∞ filter is not

as good as the other filters. In the uncertain case, however,

its robustness is achieved at the cost of compromising H∞

performance while the nominal H∞ and the nominal Kalman

filters are relatively sensitive to the parameter variations of

the system. From the results, it can be concluded that the

proposed robust H∞ filter guarantees the robustness against

all available disturbances in the presence of parameter un-

certainty but it may be overly conservative in mean square

error sense due to considering whole uncertain situations.

5. Conclusion

Kalman filter solution obtained in Krein space intuitively

lead us to evaluate the solution to robust H∞ filtering prob-

lem. Suboptimal H∞ constraint and parameter uncertainty



can be combined into SQC, which is easily converted into

an indefinite quadratic form. Minimizing solution of this

quadratic form give us the estimates that satisfy the H∞

constraint. Thus, we have the solution to robust H∞ filter-

ing problem with the simple way compared with the exist-

ing solutions. Although H∞ filters have inherent robustness

against uncertainties, the proposed robust H∞ filter shows

better robustness against parameter uncertainties than nom-

inal H∞ filter and conventional Kalman filter.

Appendix

Block triangular factorization is used frequently in this pa-

per. Although 2×2 triangular factorization formulas are well

known and found in many text books, we need 3 ×3 block

triangular factorization because we have augmented matrices

including uncertain matrix. Say that we have the following

3×3 block matrix.






A B C

D E F

G H J







−1

=







I X1 X2

0 I X3

0 0 I













D1 0 0

0 D2 0

0 0 D3













I 0 0

X4 I 0

X5 X6 I






(47)

After some Gaussian elimination work, the following results

are obtained.

X1 = −A
−1

B (48)

X2 = A
−1

B(E − DA
−1

B)−1(F − DA
−1

C) − A
−1

C (49)

X3 = −(E − DA
−1

B)−1(F − DA
−1

C) (50)

X4 = −DA
−1 (51)

X5 = (H − GA
−1

B)(E − DA
−1

B)−1
DA

−1 − GA
−1 (52)

X6 = −(H − GA
−1

B)(E − DA
−1

B)−1 (53)

D1 = A
−1 (54)

D2 = (E − DA
−1

B)−1 (55)

D3 = (J − GA
−1

C − (H − GA
−1

B)(E − DA
−1

B)−1

(F − DA
−1

C))−1
. (56)
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