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α-COMPLETELY POSITIVE MAPS ON LOCALLY

C
∗-ALGEBRAS, KREIN MODULES AND

RADON-NIKODÝM THEOREM

Jaeseong Heo†, Un Cig Ji‡, and Young Yi Kim

Abstract. In this paper, we study α-completely positive maps between
locally C∗-algebras. As a generalization of a completely positive map, an
α-completely positive map produces a Krein space with indefinite metric,
which is useful for the study of massless or gauge fields. We construct a
KSGNS type representation associated to an α-completely positive map of
a locally C∗-algebra on a Krein locally C∗-module. Using this construc-
tion, we establish the Radon-Nikodým type theorem for α-completely
positive maps on locally C∗-algebras. As an application, we study an
extremal problem in the partially ordered cone of α-completely positive
maps on a locally C∗-algebra.

1. Introduction

One of most elegant approaches to quantum field theory is the algebraic
approach, which works for massive fields as well as massless or gauge fields. In
massless or gauge fields, the state space may be a space with indefinite metric.
Motivated by this physical fact, many people extended the GNS construction
to Krein spaces. In particular, motivated by P -functional, Heo, Hong and Ji [7]
introduced a notion of α-completely positive maps as a natural generalization of
the notion of completely positive maps, and Heo and Ji [8] proved the Radon-
Nikodým type theorem which gives the one-to-one correspondence between
α-completely positive maps and their corresponding positive operators.
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A locally C∗-algebra (or pro-C∗-algebra) is a complete Hausdorff (complex)
topological ∗-algebra of which the topology is determined by the collection
S(A) of all continuous C∗-seminorms on it. The notion of locally C∗-algebras
was first systematically studied by Inoue [9] as a generalization of C∗-algebras,
and then Phillips [15, 16] studied locally C∗-algebras that are needed for rep-
resentable K-theory of σ-C∗-algebras. A locally C∗-algebra is topologically
∗-isomorphic to an inverse limit of C∗-algebras. It is known that locally C∗-
algebras are useful for the study of non-commutative algebraic topology, pseu-
dodifferential operators and quantum field theory [3, 4, 15].

Main purpose of this paper is to construct a KSGNS (Kasparov-Stinespring-
Gelfand-Naimark-Segal) type representation on a Krein locally C∗-module as-
sociated with an α-completely positive map on a locally C∗-algebra and es-
tablish a Radon-Nikodým type theorem for α-completely positive maps on
a locally C∗-algebra. Non-commutative Radon-Nikodým theorems have at-
tracted a great deal of attention in operator algebras and mathematical physics.
There have been considerable works on non-commutative Radon-Nikodým the-
orems not only for C∗-algebras but also for algebras of unbounded operators
[1, 6, 14, 17]. In the proofs of non-commutative Radon-Nikodým type theorems,
it is essential to find the adjoint of a bounded linear operator. However, any
bounded module map between Hilbert C∗-modules need not be adjointable. To
overcome this difficulty for a Radon-Nikodým type theorem for α-completely
positive maps on a Krein C∗-module, we use the construction [18] of a self-dual
Hilbert C∗-module from a general Hilbert C∗-module.

This paper is organized as follows. In Section 2, we recall some basic notions
of Hilbert modules over locally C∗-algebras and α-completely positive maps on
locally C∗-algebras. In Section 3, we introduce a notion of a Krein locally
C∗-module as a generalization of a Krein C∗-module and construct a KSGNS
type representation of a locally C∗-algebra A associated with an α-completely
positive map. The construction leads to a Jρ-representation of the locally C∗-
algebra A on a Krein locally C∗-module. In Section 4, we establish the Radon-
Nikodým type theorem for α-completely positive maps on locally C∗-algebras.
As an application, we study an extremal problem in the partially ordered cone
of α-completely positive maps on a locally C∗-algebra. Such problems for
completely positive maps on C∗-algebras were studied by Arveson [1].

2. Preliminaries and notations

Let A be a locally C∗-algebra of which topology is understood as following.
Let S(A) be the set of all continuous C∗-seminorms on A, and then for each
p ∈ S(A), the kernel ker(p) = {a ∈ A : p(a) = 0} of p becomes a closed ideal
in A. Then Ap = A/ ker(p) is a C∗-algebra with the norm induced by p. We
denote by qp the canonical map from A onto Ap and by ap = qp(a) the image
of a in Ap. Since S(A) can be considered as a directed set with the order p ≥ q
if p(a) ≥ q(a) (a ∈ A) for all p ≥ q in S(A), there is a canonical surjective map
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qpq : Ap → Aq such that qpq(ap) = aq for every ap ∈ Ap. Then the set

{Ap,qpq : Ap → Aq, p ≥ q}

becomes an inverse system of C∗-algebras and the inverse limit lim
←−p

Ap is a

locally C∗-algebra which is isomorphic to A. Let Mn(A) denote the ∗-algebra
of all n×nmatrices overA with the usual algebraic operations and the topology
obtained by regarding it as a direct sum of n2 copies of A. Then Mn(A) is a
locally C∗-algebra and it is isomorphic to

lim
←−
p

Mn(Ap),

where p runs through S(A). The topology on the locally C∗-algebra Mn(A) is
determined by the family of C∗-seminorms {pn : p ∈ S(A)}, where pn([aij ]) =∥∥[qp(aij)]

∥∥
Mn(A)

.

Example 2.1. We now give some examples of locally C∗-algebras and refer
[15] and its references for more examples.

(1) Every C∗-algebra is a locally C∗-algebra. A closed ∗-subalgebra of a
locally C∗-algebra is again a locally C∗-algebra.

(2) Let C(Ω) be the set of all continuous complex-valued functions on a
compactly generated space Ω. If we equip C(Ω) with the topology of
uniform convergence on compact subsets, then C(Ω) becomes a locally
C∗-algebra. Thus, we see that if X is any nonempty subset of the
complex field C, then C(X) is a locally C∗-algebra.

(3) The product of C∗-algebras with the product topology is a locally C∗-
algebra.

(4) Let A be a locally C∗-algebra. The unitization A1 is the vector space
A⊕C, topologized as the direct sum and multiplication defined as for
the unitization of C∗-algebras. Then A1 is a locally C∗-algebra since
A1 = lim

←−p
A1
p.

A self-adjoint a ∈ A is positive if there exists an element b ∈ A such that
a = b∗b. Note that a ≥ 0 if and only if for every p ∈ S(A), ap = qp(a) ≥ 0 in
Ap. An approximate unit for A is an increasing net {eλ} of positive elements
of A such that

‖eλ‖∞ = sup{p(eλ) : p ∈ S(A)} ≤ 1 for all λ,

and p(eλa− a) → 0 and p(aeλ − a) → 0 for all a ∈ A and p ∈ S(A). The set
of all bounded elements of A is denoted by

b(A) = {a ∈ A : ‖a‖∞ <∞},

which is a C∗-algebra with the norm ‖ · ‖∞ and is dense in A. A morphism of
locally C∗-algebras is a continuous morphism of ∗-algebras and an isomorphism
of locally C∗-algebras is a morphism that is invertible and such that its inverse
is also a morphism. We refer [5, 9, 12, 15] for more detailed information about
locally C∗-algebras.
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Definition 2.2. Let A be a locally C∗-algebra, and let E be a (complex) vector
space which is a right A-module, compatibly with the algebra structure. Then
E is called a pre-Hilbert A-module if it is equipped with an A-valued inner
product 〈·, ·〉 : E × E → A which is linear in the second variable and satisfies
the following properties:

(i) 〈ξ, ξ〉 ≥ 0, and the equality holds only if ξ = 0,
(ii) 〈ξ, η〉 = 〈η, ξ〉∗,
(iii) 〈ξ, ηa〉 = 〈ξ, η〉a.

We say that E is a Hilbert A-module if E is complete with respect to the
seminorms ‖ξ‖p = p(〈ξ, ξ〉)1/2 for p ∈ S(A).

Throughout this paper, A and E denote a locally C∗-algebra and a Hilbert
A-module, respectively, unless specified otherwise.

For any p ∈ S(A) and Np = {ξ ∈ E : p(〈ξ, ξ〉) = 0}, we write Ep for the
Hilbert Ap-module E/Np with (ξ+Np)qp(a) = ξa+Np and 〈ξ+Np, η+Np〉 =
qp(〈ξ, η〉). We denote by Qp the canonical map from E onto Ep and ξp denotes
the image Qp(ξ). For p ≥ q in S(A), there is a canonical surjective map Qpq :
Ep → Eq such that Qpq(ξp) = ξq for ξp ∈ Ep. Then {Ep,Qpq : Ep → Eq, p ≥ q}
is an inverse system of Hilbert C∗-modules in the sense that

Qpq(ξpap) = Qpq(ξp)qpq(ap) for ξp ∈ Ep, ap ∈ Ap,

〈Qpq(ξp),Qpq(ηp)〉 = qpq(〈ξp, ηp〉) for ξp, ηp ∈ Ep,

Qqr ◦Qpq = Qpr for p ≥ q ≥ r.

Then the inverse limit lim
←−p∈S(A)

Ep is a Hilbert A-module with

(ξp)p∈S(A)(ap)p∈S(A) = (ξpap)p∈S(A) and

〈(ξp)p∈S(A), (ηp)p∈S(A)〉 = (〈ξp, ηp〉)p∈S(A)

and it is isomorphic to the Hilbert A-module E .
Let E and F be Hilbert A-modules. A map T : E → F is said to be

adjointable if there is a map T ∗ : F → E such that 〈Tξ, η〉 = 〈ξ, T ∗η〉 for all
ξ ∈ E and η ∈ F . We denote by LA(E ,F) the set of all adjointable maps from
E into F and write LA(E) for LA(E , E). The strict topology on LA(E) is defined
by the family of seminorms {‖ · ‖p,ξ : p ∈ S(A), ξ ∈ E}, where

‖T ‖p,ξ = ‖Tξ‖p + ‖T
∗ξ‖p.

Since T (Np) ⊂ NF
p = {η ∈ F : p(〈η, η〉) = 0} for all p ∈ S(A) and T ∈

LA(E ,F), we can define a map (qp)∗ : LA(E ,F)→ LAp
(Ep,Fp) by

(qp)∗(T )(Qp(ξ)) = QF
p (T (ξ)) (T ∈ LA(E ,F), ξ ∈ E),

where QF
p is the canonical map from F onto Fp. We denote by Tp the operator

(qp)∗(T ). The topology on LA(E ,F) is given by the family of seminorms
{p̃}p∈S(A), where

(2.1) p̃(T ) = ‖(qp)∗(T )‖ = ‖Tp‖.
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Then LA(E) becomes a locally C∗-algebra. The connecting maps of the inverse
system {LAp

(Ep,Fp) : p ∈ S(A)} are denoted by (qpq)∗ : LAp
(Ep,Fp) →

LAq
(Eq,Fq) and the connecting maps are defined as follows:

(qpq)∗(Tp)(Qp(ξ)) = QF
pq(Tp(Qp(ξ))) for p ≥ q,

where QF
pq : Fp → Fq (p ≥ q) are the connecting maps of a family {Fp} of

Hilbert C∗-modules. Then the family {LAp
(Ep,Fp), (qpq)∗, p ≥ q} is an inverse

system of Banach spaces and the inverse limit lim
←−p

LAp
(Ep,Fp) is isomorphic to

LA(E ,F). See [15] for inverse limits of Hilbert C∗-modules and Banach spaces.
Let A,B be locally C∗-algebras and let F be a Hilbert B-module. A con-

tinuous linear map ρ : A → LB(F) is strict if for some approximate unit {eλ}
of A, {ρ(eλ)} is strictly Cauchy in LB(F). A multiplier algebra M(A) of A is
the set of all multipliers (l, r) where l, r : A → A are morphisms of left, right
A-modules such that

al(b) = r(a)b, l(ab) = l(a)b and r(ab) = ar(b) for all a, b ∈ A.

The strict topology onM(A) is the topology generated by the seminorms ‖·‖p,a
(p ∈ S(A), a ∈ A) where

‖(l, r)‖p,a = p(l(a)) + p(r(a)).

The map a 7→ (la, ra) is a homeomorphism of A onto the closed ideal ofM(A)
where la(b) = ab and ra(b) = ba, and the image of A under this map is dense
inM(A) in the strict topology. Moreover,M(A) becomes a locally C∗-algebra
(see [15, Theorem 3.14]).

Definition 2.3 (cf. [7]). A Hermitian map ρ : A → LB(F) is called α-
completely positive (briefly, α-CP) if there is a continuous linear Hermitian
map α : A → A such that

(i) α2 = idA, where idA is the identity map on A,
(ii) for any approximate unit {eλ}λ∈Λ for A, {α(eλ)}λ∈Λ is also an approx-

imate unit,
(iii) ρ(ab) = ρ(α(a)α(b)) = ρ(α(ab)) for any a, b ∈ A,
(iv) for any n ≥ 1, a1, . . . , an ∈ A and ξ1, . . . , ξn ∈ F ,

n∑

i,j=1

〈
ξi, ρ(α(ai)

∗aj)ξj
〉
≥ 0,

(v) for any a, a1, . . . , an ∈ A, there exists a constant M(a) > 0 such that
(
ρ(α(aai)

∗aaj)
)
n×n
≤M(a)

(
ρ
(
α(ai)

∗aj
))
n×n

,

where (·)n×n denotes an n× n operator matrix,
(vi) there exist a strictly continuous positive linear map ρ ′ : M(A) →

LB(F) and a constant K > 0 such that ρ(α(a)∗a) ≤ Kρ ′(a∗a) for any
a ∈ A.
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The following example shows the existence of an α-CP map which is not
completely positive on the 2× 2-matrix algebra.

Example 2.4. Let a > 1 be a constant and let D be the set of 2× 2 diagonal
matrices over the complex field C, i.e.,

D =

{(
x 0
0 y

) ∣∣∣∣ x, y ∈ C

}
.

We define a Hermitian map α : D → D by

α

((
x 0
0 y

))
=

(
ax+ (1− a)y 0

0 (1 + a)x− ay

)
.

For some ai, bi ∈ R with ai > 0 (i = 1, 2), we define a Hermitian map ρ : D → D
by

ρ

((
x 0
0 y

))
=

(
a1x+ b1y 0

0 a2x+ b2y

)
.

Now, we assume that a1 = a2 and ai(1 − a) = bi(1 + a) (i = 1, 2). Then ρ is
α-completely positive, but is not completely positive. See [7] for the proof and
detailed information about α-completely positive maps.

3. KSGNS type constructions for α-CP maps on locally C
∗-algebra

Let B be a locally C∗-algebra and let F be a Hilbert B-module with a B-
valued inner product 〈·, ·〉. Suppose that a (fundamental) symmetry J on F ,
i.e., J = J∗ = J−1, is given to produce a B-valued indefinite inner product

〈ξ, η〉J = 〈ξ, Jη〉 (ξ, η ∈ F).

In this case, the pair (F , J) is called a Krein B-module. Let A be a locally
C∗-algebra. A representation π : A → LB(F) is called a J-representation on a
Krein B-module (F , J) if π is a homomorphism of A into LB(F) such that

π(a∗) = π(a)J := Jπ(a)∗J for all a ∈ A.

Bhatt and Karia [2] gave the Stinespring’s construction for locally C∗-algebras
and Joiţa [10] generalized the KSGNS construction in the context of Hilbert
modules over locally C∗-algebras.

Let p be any element in S(A). We say that a linear map β on A is p-
continuous if there exists a constant Cp > 0 such that p(β(a)) ≤ Cp · p(a) for
all a ∈ A. In the following theorem, we give a representation associated with
an α-CP map between locally C∗-algebras, which is a generalization of our
KSGNS type representation associated to an α-CP map on a Krein C∗-module
[7].

Theorem 3.1. Let A,B be locally C∗-algebras and let F be a Hilbert B-module.
If ρ : A → LB(F) is a strictly continuous α-CP linear map where α is p-
continuous for each p ∈ S(A), then there exist a Krein B-module (Fρ, Jρ), a
Jρ-representation πρ : A → LB(Fρ) and an operator Vρ ∈ LB(F ,Fρ) such that
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(i) ρ(a) = V ∗
ρ πρ(a)Vρ (so, ρ(a∗) = V ∗

ρ πρ(a)
JρVρ) for all a ∈ A,

(ii) πρ(A)Vρ(F) is dense in Fρ,
(iii) V ∗

ρ πρ(a)
∗πρ(b)Vρ = V ∗

ρ πρ(α(a)
∗b)Vρ for all a, b ∈ A.

Proof. First we suppose that B is a C∗-algebra as in [10, Theorem 4.6]. Since
ρ is continuous, there exist a C∗-seminorm p ∈ S(A) and a constant C > 0
such that ‖ρ(a)‖ ≤ C · p(a) for all a ∈ A. Thus, we can find a linear map
ρp : Ap → LB(F) with ρp ◦ qp = ρ. Since α is p-continuous for each p ∈ S(A),
we have that α(a) ∈ ker(p) for all a ∈ ker(p). We denote by αp the induced
map on Ap from α. Then αp : Ap → Ap is a hermitian map such that

αp ◦ qp = qp ◦ α and α2
p = idAp

.

We claim that the map ρp : Ap → LB(F) is αp-completely positive. Indeed,
for n ≥ 1, a1,p, . . . , an,p ∈ Ap and ξ1, . . . , ξn ∈ F we have that

n∑

i=1

〈
ξi, ρp(αp(ai,p)

∗aj,p)ξj
〉
=

n∑

i=1

〈
ξi, ρp(αp(qp(ai)

∗)qp(aj))ξj
〉

=

n∑

i=1

〈
ξi, ρp(qp(α(ai)

∗aj))ξj
〉

=

n∑

i=1

〈
ξi, ρ(α(ai)

∗aj)ξj
〉
≥ 0.

For all ap, bp ∈ Ap, we obtain that

ρp
(
αp(ap)αp(bp)

)
= ρp

(
qp(α(a)α(b))

)
= ρ
(
α(a)α(b)

)

= ρ(ab) = ρp
(
qp(ab)

)
= ρp(apbp).

We show that the property (v) in Definition 2.3 holds. Let ap, a1,p, . . . , an,p ∈
Ap. Then we have that

(
ρp(αp(apap,i)

∗apap,j)

)

n×n

=

(
(ρp ◦ qp)(α(aai)

∗aaj)

)

n×n

≤M(a)

(
ρ(α(ai)

∗aj)

)

n×n

=M(a)

(
ρp(αp(ap,i)

∗ap,j)

)

n×n

.

Let ρ′ and K > 0 be as in (vi) of Definition 2.3. We denote by M(Ap) the
multiplier algebra of Ap. The map qp : A → Ap can be extended to a map
q̄p :M(A)→M(Ap) since A is dense inM(A) and

M(Ap) ∼=M(A)/ ker(‖ · ‖p).

By the continuity of ρ′, there is a map ρ′p :M(Ap) → LB(F) such that ρ′ =
ρ′p ◦ q̄p and ρ′p is a strictly continuous positive linear map. Hence we have that

ρp
(
αp(ap)

∗ap
)
= ρp

(
qp(α(a)

∗a)
)
= ρ
(
α(a)∗a

)
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≤ Kρ′(a∗a) = Kρ′p(a
∗
pap).

Therefore, ρp is an αp-CP linear map from a C∗-algebra Ap into a C∗-algebra
LB(F).

By Theorem 4.4 in [7], there exist a Krein B-module (Fρ, Jρ), a Jρ-represen-
tation πp : Ap → LB(Fρ) and an operator Vρ in LB(F ,Fρ) such that

(i) ρp(ap) = V ∗
ρ πp(ap)Vρ and so ρp(a

∗
p) = V ∗

ρ πp(ap)
JρVρ for all ap ∈ Ap,

(ii) πp(Ap)
[
Vρ(F)

]
is dense in Fρ,

(iii) V ∗
ρ πp(ap)

∗πp(bp)Vρ = V ∗
ρ πp

(
αp(ap)

∗bp
)
Vρ for all ap, bp ∈ Ap.

We define a map πρ : A → LB(Fρ) by πρ(a) = (πp ◦ qp)(a) (a ∈ A). Then πρ
becomes a Jρ-representation of A on Fρ and we have that

ρ(a) = (ρp ◦ qp)(a) = V ∗
ρ πp(ap)Vρ = V ∗

ρ πρ(a)Vρ for a ∈ A.

Furthermore, the set πρ(A)[Vρ(F)] = πp(Ap)[Vρ(F)] is dense in Fρ.
We assume that B is a locally C∗-algebra. Since ρ is continuous, for each p ∈

S(B) there are qp ∈ S(A) and a constant Cp > 0 such that p̃(ρ(a)) ≤ Cp · qp(a)
for any a ∈ A, where p̃ is defined as in (2.1). There exists a linear map
ρp : Aqp → LBp

(Fp) by ρp ◦ qqp = (qp)∗ ◦ ρ, where (qp)∗ : LB(F) → LBp
(Fp)

is defined by

(qp)∗(T )(Qp(ξ)) = Qp(T (ξ)) for any ξ ∈ F .

Denoting by αqp the induced map ofAqp from α, we have that αqp◦qqp = qqp◦α.
We claim that the map ρp ◦qqp is α-completely positive. To do this, we will

show the αqp -complete positivity of ρp. Indeed, for any a1,qp , . . . , an,qp ∈ Aqp
and ξ1,p, . . . , ξn,p ∈ Fp, we have that

n∑

i=1

〈ξp,i, ρp(αqp(aqp,i)
∗aqp,j)ξp,j〉 =

n∑

i=1

〈Qp(ξi), (ρp ◦ qqp)(α(ai)
∗aj)Qp(ξj)〉

=

n∑

i=1

〈Qp(ξi), (qp)∗(ρ(α(ai)
∗aj))Qp(ξj)〉

=
n∑

i=1

qp(〈ξi, ρ(α(ai)
∗aj)ξj〉) ≥ 0.

For any aqp , bqp ∈ Aqp , we obtain that

ρp(αqp(aqp)αqp(bqp)) = (qp)∗(ρ(α(a)α(b))) = ρp(aqpbqp).

Let aqp , a1,qp , . . . , an,qp be elements in Aqp . Then we have that
(
ρp(αqp(aqpai,qp)

∗aqpaj,qp)
)
n×n

=
(
(ρp ◦ qqp)(α(aai)

∗aaj)
)
n×n

= ((qp)∗(ρ(α(aai)
∗aaj)))n×n

≤M(a) ((qp)∗(ρ(α(aj)
∗ai)))n×n

=M(a)
(
ρp(αqp(ai,qp)

∗aj,qp)
)
n×n

,
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where M(a) is the positive constant in (v) of Definition 2.3. Let ρ′ :M(A)→
LB(F) be a strictly continuous positive map satisfying condition (vi) of Defini-
tion 2.3. Then we can find the map ρ′p :M(Aqp)→ LBp

(Fp) which is positive
and satisfies (qp)∗ ◦ ρ

′ = ρ′p ◦ qqp . Then we have that

ρp
(
αqp(aqp)

∗aqp
)
= (qqp)∗

(
ρ(α(a)∗a)

)
≤ K · ρ′p(a

∗
qpaqp),

where K > 0 is in (vi) of Definition 2.3. Therefore, the map ρp ◦ qqp is α-
completely positive.

By the preceding argument, there exist a Krein Bp-module (Fρp , Jp), a Jp-
representation πρp and an operator Vρp ∈ LBp

(Fp,Fρp) such that

(i) (ρp ◦ qqp)(a) = V ∗
ρpπρp(a)Vρp for all a ∈ A,

(ii) πρp(A)
[
Vρp(Fp)

]
is dense in Fρp ,

(iii) V ∗
ρpπρp(a)

∗πρp(b)Vρp = V ∗
ρpπρp

(
α(a)∗b

)
Vρp for all a, b ∈ A.

For p, r ∈ S(B) with r ≤ p, we have r̃(ρ(a)) ≤ p̃(ρ(a)) ≤ Cp ·qp(a) for all a ∈ A.
We may assume that qr ≤ qp. In the construction of the Krein C∗-module, we
know that Fρp is the completion of the quotient space

Aqp ⊗alg Fp/ ker(〈·, ·〉p),

where ⊗alg is the algebraic tensor product and

〈aqp ⊗ ξp, bqp ⊗ ηp〉p = 〈ξp, ρp(αqp(aqp)
∗bqp)ηp〉.

We consider the linear map Ψpr : Aqp ⊗alg Fp → Aqr ⊗alg Fr defined by

Ψpr(aqp ⊗ ξp) := qqpqr (aqp)⊗Qpr(ξp) = aqr ⊗ ξr .

Let aqp , bqp ∈ Aqp and ξp, ηp ∈ Fp. Then we obtain that

〈
Ψpr(aqp ⊗ ξp),Ψpr(bqp ⊗ ηp)

〉

=
〈
qqpqr (aqp)⊗Qpr(ξp),qqpqr (bqp)⊗Qpr(ηp)

〉

=
〈
Qpr(ξp), ρr(αqr (qqpqr (aqp)

∗)qqpqr (bqp))Qpr(ηp)
〉

=
〈
Qpr(ξp), (qr)∗(ρ(α(a)

∗b))Qpr(ηp)
〉

=
〈
Qpr(ξp),Qpr(ρp(αqp(aqp)

∗bqp)ηp)
〉

= qpr
(
〈aqp ⊗ ξp, bqp ⊗ ηp〉

)
.

Hence Ψpr induces a linear map from Aqp ⊗alg Fp/ ker(〈·, ·〉p) into Aqr ⊗alg

Fr/ ker(〈·, ·〉r) that can be extended to a linear map, still denoted by Ψpr, from
Fρp into Fρr . Therefore, the set {Fρp ,Bp,Ψpr : Fρp → Fρr , p ≥ r} is an inverse
system of Hilbert C∗-modules.

From the proof of Theorem 4.6 in [10], we obtain the following isomorphisms

LB(F ,Fρ) = lim
←−
p

LBp
(Fp,Fρp) and LB(Fρ) = lim

←−
p

LBp
(Fρp),
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where Fρ = lim
←−p

Fρp . Since Ψpr ◦ Vρp = Vρr ◦Qpr holds for every p, r ∈ S(B)

with p ≥ r, we have that
(
Vρp
)
p∈S(B)

∈ lim
←−
p

LBp
(Fp,Fρp).

Since Ψpr ◦πρp(a) = πρr (a)◦Ψpr for all a ∈ A, we obtain that (πρp(a))p∈S(B) ∈
lim
←−p

LBp
(Fρp). The map πρ : A → lim

←−p
LBp

(Fρp) given by

πρ(a) =
(
πρp(a)

)
p∈S(B)

is a continuous representation of A on Fρ. From the equality
(
(qp)∗ ◦ ρ

)
(a) = (ρp ◦ qqp)(a) = V ∗

ρpπρp(a)Vρp ,

we obtain that ρ(a) = V ∗
ρ πρ(a)Vρ, where Vρ =

(
Vρp
)
p∈S(B)

. Moreover, it follows

from the density of πρp(A)
[
Vρp(Fp)

]
in Fρp that the closure of πρ(A)

[
Vρ(F)

]

is Fρ.
By the relation V ∗

ρpπρp(a)
∗πρp(b)Vρp = V ∗

ρpπρp(α(a)
∗b)Vρp (a, b ∈ A), we

have that

V ∗
ρ πρ(a)

∗πρ(b)Vρ =
(
V ∗
ρpπρp(α(a)

∗b)Vρp
)
p∈S(B)

= V ∗
ρ πρ(α(a)

∗b)Vρ.

Since πρp is a Jp-representation of A, we also have that

πρ(a
∗) =

(
πρp(a

∗)
)
p∈S(B)

=
(
πρp(a)

Jp
)
p∈S(B)

= πρ(a)
Jρ ,

which implies that πρ is a Jρ-representation. �

The quadruple (Fρ, Jρ, πρ, Vρ) satisfying (i) and (iii) in Theorem 3.1 is called
the Krein quadruple associated with an α-CP map ρ. If, in addition, (ii) is
satisfied, then such a quadruple is said to be minimal. The following theorem
says that such a minimal quadruple is unique up to unitary equivalence.

Theorem 3.2. Let A,B,F and ρ be as in Theorem 3.1 and let (Fρ, Jρ, πρ, Vρ)
be the minimal Krein quadruple. Suppose that F ′ is a Hilbert B-module and
W ∈ LB(F ,F

′). If π : A → LB(F
′) is a continuous Jρ-representation such

that

(i) ρ(a) =W ∗π(a)W for all a ∈ A,
(ii) π(A)

[
W (F)

]
is dense in F ′,

(iii) W ∗π(a)∗π(b)W =W ∗π
(
α(a)∗b

)
W for all a, b ∈ A,

then there exists a unitary operator U ∈ LB(Fρ,F
′) such that

W = UVρ and π(a) = Uπρ(a)U
∗ for all a ∈ A.

Proof. The proof is the same as that of [10, Theorem 4.6], so we omit it. �
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4. Radon-Nikodým type theorem for α-completely positive maps

In this section we prove the Radon-Nikodým type theorem for α-CP maps
on locally C∗-algebras, which may regarded as a generalization of the results in
[8]. In the proof of non-commutative Radon-Nikodým type theorems concerned
with Hilbert space structure, it is essential that a bounded linear operator on
a Hilbert space has an adjoint. However, any bounded module map between
Hilbert C∗-modules need not be adjointable. To overcome this difficulty for
a Radon-Nikodým type theorem, we use a construction of a self-dual Hilbert
C∗-module from a Hilbert C∗-module, which is similar to that in [18]. A Radon-
Nikodým type theorem for completely positive maps on locally C∗-algebras can
be found in [11], whose proof is similar to ours for α-CP maps.

Throughout this section, we assume that A is a locally C∗-algebra and F
is a Hilbert C∗-module over B. We denote by F# = HomB(F ,B) the set
of all bounded B-module maps of F into B. Then F# naturally becomes
a right Banach B-module with the (canonical) action of B on F# given by
(T · b)(ξ) = b∗T (ξ). Note that each ξ ∈ F gives rise to the map ξ# ∈ F#

defined by ξ#(η) = 〈ξ, η〉 for η ∈ F . Since the map ι : F → F# given by
ι(ξ) = ξ# is an isometric B-module map, we can regard F as a submodule of
F# by identifying with ι(F). We call F self-dual if F = F#, that is, every
bounded B-module map T : F → B is of the form 〈ξT , ·〉 for some element
ξT ∈ F .

For reader’s convenience, we review some results about self-dual Hilbert C∗-
modules, see [13] for more details. Let E be a Hilbert B-module. In the case of
a von Neumann algebra B, the B-valued inner product on E extends to E#×E#

in such a way as to make E# into a self-dual Hilbert B-module. Furthermore,
any bounded B-module map T : E → F extends uniquely to a bounded B-

module map T̃ : E# → F#. If E is self-dual, then BB(E ,F) = LB(E ,F), where
BB(E ,F) is the space of all bounded B-module maps of E into F . In particular,
we have that BB(E) = LB(E). We briefly review a construction of a self-dual
Hilbert C∗-module from given Hilbert C∗-module. We refer [18] for a detailed
information of the construction.

Let B∗∗ be the enveloping von Neumann algebra of B and let F be a Hilbert
B-module. The algebraic tensor product F⊗algB

∗∗ becomes a right B∗∗-module
with the multiplication (ξ⊗a)b = ξ⊗ab. If we define a B∗∗-valued inner product
[·, ·] on F ⊗ B∗∗ by




n∑

i=1

ξi ⊗ ai,

m∑

j=1

ηj ⊗ bj


 =

n∑

i=1

m∑

j=1

a∗i 〈ξi, ηj〉bj ,

then (F ⊗alg B
∗∗)/ ker[·, ·] becomes a pre-Hilbert B∗∗-module containing F as

a B-submodule, since the map ξ 7→ ξ ⊗ 1 + ker[·, ·] is isometric. Let F̂ be the
Hilbert C∗-module completion of (F⊗algB

∗∗)/ ker[·, ·] with respect to the norm

induced by [·, ·]. We denote by F̃ the self-dual Hilbert B∗∗-module (F̂)# (see



72 JAESEONG HEO, UN CIG JI, AND YOUNG YI KIM

[13, Theorem 3.2] for the self-duality of F̃). We will consider F as embedded

in F̃ without making distinction.

Remark 4.1. Now, we recall the unique extension of operators in BB(E ,F) or
BB(F ,F

#) to operators on a self-dual Hilbert module as follows;

(1) For each T in BB(E ,F), we have the inequality
[

n∑

i=1

Tξi ⊗ ai,

n∑

i=1

Tξi ⊗ ai

]

F̂

≤ ‖T ‖2

[
n∑

i=1

ξi ⊗ ai,

n∑

i=1

ξi ⊗ ai

]

Ê

,

so that T can be extended uniquely to a bounded B∗∗-module map T̂

from Ê into F̂ . Then by [13, Proposition 3.6], T̂ extends uniquely to

a bounded B∗∗-module map T̃ from Ẽ to F̃ with ‖T ‖ = ‖T̃‖. Indeed,

we first consider the map
(
T̂
)♮

: F̂ → Ẽ defined by
((
T̂
)♮
(ζ)
)
(ξ) =

[
ζ, T̂ ξ

]
F̂
, (ζ ∈ F̂ , ξ ∈ Ê). We define a map T̃ =

((
T̂
)♮)♮

: Ẽ → F̃ by
(((

T̂
)♮)♮

(τ)
)
(ζ) =

[
τ,
(
T̂
)♮
ζ
]
Ẽ

(τ ∈ Ẽ , ζ ∈ F̂).

Let E ,F and H be Hilbert C∗-modules over B. Then we have that

S̃T = S̃T̃ for all T ∈ BB(E ,F) and S ∈ BB(F ,H) and that
(
T̃
)∗

= T̃ ∗

if T ∈ LB(E ,F).
(2) For any T ∈ BB(F ,F

#), we can naturally extend to an element T ∈

BB∗∗(F̂ , F̃) as follows:
[
T

(
n∑

i=1

ξi ⊗ ai

)]


m∑

j=1

ηj ⊗ bj


 =

n∑

i=1

m∑

j=1

a∗i
[
T (ξi)

]
(ηj)bj.

Hence we extend it again to an element T̃ =
(
T
)♮
∈ BB∗∗(F̃).

We refer [18] for more details of these two extensions.

Let (F , J) be a Krein C∗-module over B. We extend J to Ĵ on the algebraic
tensor product F ⊗alg B

∗∗ as follows:

Ĵ

(
n∑

i=1

ξi ⊗ ai

)
=

n∑

i=1

J(ξi)⊗ ai.

If the pair (F , J) is a Krein B-module, then the indefinite inner product [·, ·]Ĵ
on F ⊗alg B

∗∗ defined by

[F,G]Ĵ =
[
F, Ĵ(G)

]
, F,G ∈ F ⊗ B∗∗

gives the Krein B∗∗-module structure. Then the pair (F̂ , Ĵ) becomes a Krein

B∗∗-module. Moreover, we can easily see that the induced map J̃ by Ĵ is again

a (fundamental) symmetry on F̃ and so (F̃ , J̃) becomes a Krein B∗∗-module.
From the construction of above extensions, we obtain that any J-representation
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π of A on a Hilbert B-module F induces a J̃-representation π̃ of A on a self-

dual Hilbert B∗∗-module F̃ given by π̃(a) = π̃(a). Hence an α-CP linear map

ρ from a C∗-algebra A to a LB(F) induces a J̃ρ-representation π̃ρ of A on a

self-dual Hilbert B∗∗-module F̃ρ.
Now we extend the results in [8] and [18] for a strictly continuous α-CP

map from a locally C∗-algebra A into a C∗-algebra B. In the remaining of this
section, we assume that α is p-continuous for each p ∈ S(A).

We denote by α-CP(A,F) the set of all strictly continuous α-CP maps of A
into LB(F). We define a partial order ≤ on α-CP(A,F) as follows:

φ1 ≤ φ2 ⇐⇒ φ2 − φ1 ∈ α-CP(A,F) for φ1, φ2 ∈ α-CP(A,F).

Let (Fi, Ji, πi, Vi) (i = 1, 2) be minimal Krein quadruples associated with φi ∈
α-CP(A,F), which is constructed in Theorem 3.1.

Theorem 4.2. If φ1, φ2 ∈ α-CP(A,F) with φ1 ≤ φ2, then there is a bounded
B-module map S from F2 into F1 such that SV2 = V1, SJ2 = J1S and

Sπ2(a) = π1(a)S for all a ∈ A.

Moreover, S extends uniquely to a bounded B∗∗-module map S̃ from F̃2 into

F̃1 with ‖S̃‖ = ‖S‖.

Proof. By Theorem 3.1, there exist a Krein B-module (Fi, Ji), a Ji-represen-
tation πi of A on Fi and an operator Vi ∈ LB(F ,Fi) such that

φi(a) = V ∗
i πi(a)Vi and V ∗

i πi(a)
∗πi(b)Vi = V ∗

i πi(α(a)
∗b)Vi (i = 1, 2).

We define a bounded B-module map S : F2 → F1 by

(4.2) S
(
π2(a)V2ξ

)
= π1(a)V1ξ (a ∈ A, ξ ∈ F).

Since φ1 ≤ φ2, it immediately follows from the definition that ‖S‖ ≤ 1. It is
easy to see that SV2 = V1, SJ2 = J1S and Sπ2(a) = π1(a)S for all a ∈ A (see
the proof of [8, Lemma 3.3] for more details). Hence, we can extend S to a

bounded B∗∗-module map Ŝ from F2 ⊗alg B
∗∗ into F1 ⊗alg B

∗∗. Moreover, Ŝ

maps ker[·, ·]2 into ker[·, ·]1 since φ1 ≤ φ2. By continuity, we extend Ŝ again

to a bounded B∗∗-module map, still denoted by Ŝ, from F̂2 into F̂1. By [13,

Proposition 3.6], Ŝ is uniquely extended to a B∗∗-module map S̃ from F̃2 into

F̃1. �

Let T = (S̃)∗S̃. If we extend π2 to π̃2 as a J̃2-representation of A on F̃2,
then

T π̃2(a) = π̃2(a)T and φ̃1(a) = Ṽ2
∗

T π̃2(a)Ṽ2 for all a ∈ A.

Indeed, we obtain from the equation (4.2) that S̃π̃2(a) = π̃1(a)S̃ for all a ∈ A,

which also implies
(
S̃
)∗
π̃1(a) = π̃2(a)

(
S̃
)∗

for all a ∈ A. Thus, we can easily
get T π̃2(a) = π̃2(a)T . Moreover, we have that for all a ∈ A

Ṽ2
∗

T π̃2(a)Ṽ2 = Ṽ2
∗

(S̃)∗S̃π̃2(a)Ṽ2 = Ṽ2
∗

(S̃)∗π̃1(a)S̃Ṽ2 = φ̃1(a).
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For any φ ∈ α-CP(A,F), we denote by π̃φ(A)
′ the commutant of π̃φ(A) in

LB∗∗(F̃φ). If a self-adjoint operator T ∈ π̃φ(A)
′ commutes with J̃φ and if

Ṽφ
∗

T π̃φ(a)Ṽφ
∣∣
F
∈ LB(F) for all a ∈ A,

then the restriction of T to Fφ is a B-module map T
∣∣
Fφ

from Fφ into F#
φ .

Indeed, for all a, b ∈ A and ξ, η ∈ F , we have that
〈
Tπφ(a)Vφξ, πφ(b)Vφη

〉
=
〈
T π̃φ(a)Ṽφξ, π̃φ(b)Ṽφη

〉

=
〈
ξ, Ṽφ

∗

T π̃φ(α(a)
∗b)Ṽφη

〉
,

which implies that 〈Tπφ(a)Vφξ, πφ(b)Vφη〉 ∈ B since the set πφ(A)
[
Vφ(F)

]

spans a dense submodule of Fφ. Therefore, the range of the restriction T
∣∣
Fφ

is

in F#
φ .

Let C∗(φ,F) be the C∗-subalgebra of LB∗∗(F̃φ) generated by
{
T ∈ π̃φ(A)

′ : T J̃φ = J̃φT and Ṽφ
∗

T π̃φ(a)Ṽφ
∣∣
F
∈ LB(F)

}
.

Let (Fφ, Jφ, πφ, Vφ) be a minimal Krein quadruple associated with φ ∈ α-
CP(A,F) which is constructed in Theorem 3.1.

Proposition 4.3. If T ∈ C∗(φ,F) is a positive operator, then the linear map
φT : A → LB(F) defined by

φT (a) = Ṽφ
∗

T π̃φ(a)Ṽφ
∣∣
F

is a strictly continuous α-CP map from A into LB(Fφ). If T ≤ I
F̃φ

, then

φT ≤ φ.

Proof. In the same way as in the proof of [8, Proposition 3.1], we can prove
that φT is α-CP, so that we omit its proof. Also, we can easily see that T ≤ I

F̃φ

implies φT ≤ φ. We only need to show that φT is strictly continuous. Let {eλ}
be an approximate unit for A. For any ξ ∈ F we have that

‖φT (eλ)ξ − φT (eµ)ξ‖ =
∥∥∥Ṽφ

∗

T
[
π̃φ(eλ)− π̃φ(eµ)

]
Ṽφξ

∥∥∥

≤
∥∥∥Ṽφ

∗

T
∥∥∥
∥∥[πφ(eλ)− πφ(eµ)

]
Vφξ

∥∥ .

Since the net {πφ(eλ)Vφξ} is Cauchy in Fφ, {φT (eλ)} is a strictly Cauchy net.
This completes the proof. �

For any φ ∈ α-CP(A,F), we introduce two sets as follows:

[0, φ]α = {ψ ∈ α-CP(A,F) : ψ ≤ φ},

[0, I]φ = {T ∈ C∗(φ,F) : 0 ≤ T ≤ I
F̃φ
},

where (Fφ, Jφ, πφ, Vφ) be a minimal Krein quadruple associated with φ. We
now consider the map T 7→ φT from [0, I]φ to [0, φ]α. Then it is not hard to
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show that the map is affine. To show the injectivity, let T ∈ [0, I]φ such that
φT = 0. Then we have that

Ṽφ
∗

T π̃φ(a)Ṽφ
∣∣
F
= 0 for all a ∈ A,

which implies that 0 = 〈Tπφ(a)Vφξ, πφ(b)Vφη〉 for any a, b ∈ A and ξ, η ∈ F .
Since the set {πφ(b)Vφη : b ∈ A, η ∈ F} spans a dense submodule of Fφ, we

have that T
∣∣
Fφ

= 0 and so T = 0. In fact, since T
∣∣
Fφ
∈ BB(Fφ,F

#
φ ), by (2) in

Remark 4.1, it can be extended to an element T
∣∣
Fφ
∈ BB∗∗(F̂φ, F̃φ) with

[
T
∣∣
Fφ

(
n∑

i=1

xi ⊗ ai

)]


m∑

j=1

yj ⊗ bj


 =

n∑

i=1

m∑

j=1

a∗i

[
T
∣∣
Fφ

(xi)
]
(yj)bj

for any xi, yj ∈ Fφ and ai, bj ∈ B
∗∗ with 1 ≤ i ≤ n, 1 ≤ j ≤ m. From the

equality
[
T
∣∣
Fφ

(xi)
]
(yj) =

(
T ((xi ⊗ IB∗∗)#)

)
(yj ⊗ IB∗∗)

=
〈
T
(
(xi ⊗ IB∗∗)#

)
, (yj ⊗ IB∗∗)#

〉
,

we obtain that

T
∣∣
Fφ

(
n∑

i=1

xi ⊗ ai

)
= T



(

n∑

i=1

xi ⊗ ai

)#

 .

Hence the map T
∣∣
Fφ

can be extended to T̃
∣∣
Fφ

=
(
T
∣∣
Fφ

)♮
in BB∗∗(F̃φ). For any

τ ∈ F̃φ and ζ ∈ F̂φ, we have that
((

T
∣∣
Fφ

)♮
(τ)

)
(ζ) =

〈
τ, T

∣∣
Fφ

(ζ)
〉
=
〈
τ, T (ζ#)

〉

=
〈
T ∗(τ), ζ#

〉
= (T ∗(τ))(ζ),

which means that T̃
∣∣
Fφ

= T ∗. Hence, if T
∣∣
Fφ

= 0, then T ∗ = 0 and so T = 0.

Theorem 4.4. Let φ ∈ α-CP(A,F). Then the map T 7→ φT is an affine order
isomorphism of [0, I]φ onto [0, φ]α.

Proof. We have already proved that the map T 7→ φT is affine and injective.
Now, we prove that the map is onto, i.e., each element ψ ∈ [0, φ]α is of the form
ψ = φT for some T ∈ [0, I]φ. Let (Fψ, Jψ, πψ, Vψ) be a minimal Krein quadruple
associated with ψ. By Theorem 4.2, there exists a bounded B-module map S
from Fφ to Fψ such that

‖S‖ ≤ 1, SVφ = Vψ and SJφ = JψS.

Moreover, S extends uniquely to a bounded B∗∗-module map S̃ from F̃φ to

F̃ψ with ‖S‖ = ‖S̃‖. By defining T := S̃∗S̃, we have that 0 ≤ T ≤ I
F̃φ

. The



76 JAESEONG HEO, UN CIG JI, AND YOUNG YI KIM

preceding argument before Proposition 4.3 shows that the operator T commutes

with J̃φ and π̃φ(a) for all a ∈ A. Therefore, we have that

Ṽφ
∗

T π̃φ(a)Ṽφ = Ṽφ
∗

S̃∗S̃π̃φ(a)Ṽφ = Ṽφ
∗

S̃∗π̃ψ(a)S̃Ṽφ = Ṽψ
∗

π̃ψ(a)Ṽψ ,

this implies that

φT (a) = Ṽφ
∗

T π̃φ(a)Ṽφ
∣∣
F
= ψ̃(a)

∣∣
F
= ψ(a) ∈ LB(F)

for all a ∈ A and so ψ = φT . Thus, the map T 7→ φT from [0, I]φ to [0, φ]α is
surjective. We can also see that φT1

≤ φT2
whenever T1 ≤ T2 in C∗(φ,F), so

that the map preserves the order relation. �

An element φ ∈ α-CP(A,F) is said to be pure if for every ψ ∈ α-CP(A,F),
ψ ≤ φ implies that ψ is a scalar multiple of φ. Equivalently, φ ∈ α-CP(A,F)
is pure if the only possible decompositions of φ are of the form φ = φ1 + φ2
(φi ∈ α-CP(A,F)) when each φi is a scalar multiple of φ.

Corollary 4.5. Let φ ∈ α-CP(A,F) be unital. Then φ is pure if and only if
[0, I]φ only consists of scalar multiples of IFφ

.

Proof. We give the proof by a modification of the proof of Corollary 3.5 in [8].
We first assume that φ ∈ α-CP(A,F) is not pure, that is,

φ = λφ1 + (1 − λ)φ2 for some 0 < λ < 1,

where φ1, φ2 ∈ α-CP(A,F) with φ1 6= φ2. Let (Fφ, Jφ, πφ, Vφ) be a minimal
Krein quadruple associated with φ ∈ α-CP(A,F). Since φ−λφ1 = (1−λ)φ2 is
in α-CP(A,F), we have the inequality λφ1 ≤ φ, that is, λφ1 ∈ [0, φ]α. Hence,
by Theorem 4.4, there is T ∈ [0, I]φ such that λφ1 = φT . Moreover, since φ is
not pure, λφ1 is not scalar multiple of φ. Thus T is not scalar multiple of I

F̃φ
.

Conversely, assume that [0, I]φ contains 0 < T < I
F̃φ

which is not a scalar

multiple of I
F̃φ

. For any 0 < λ < 1, we define two linear maps φ1 and φ2 from

A into LB(F) by

φ1(a) = λ−1 · Ṽφ
∗

T π̃φ(a)Ṽφ
∣∣
F
,

φ2(a) = (1− λ)−1 · Ṽφ
∗

(I
F̃φ
− T )π̃φ(a)Ṽφ

∣∣
F
.

Then it follows that φ1, φ2 ∈ α-CP(A,F) and φ = λφ1 + (1− λ)φ2. Since T is
not a scalar multiple of I

F̃φ
, the map φ is not pure. �

From now on, let A be a unital locally C∗-algebra. For a fixed positive
operator P ∈ LB(F), we denote by α-CP(A,F ;P ) the set of φ in α-CP(A,F)
such that φ(1A) = P . We can get the following theorem about extreme points
by modifying the proof of Theorem 3.8 in [18] and we also refer [1, Theorem
1.4.6] for a similar result.

Theorem 4.6. Let φ ∈ α-CP(A,F ;P ). The followings are equivalent:

(i) the map φ is an extreme point in α-CP(A,F ;P );
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(ii) T 7→ Ṽφ
∗

T Ṽφ|F is a one-to-one mapping from [0, I]φ into LB(F);

(iii) T 7→ Ṽφ
∗

T Ṽφ is a one-to-one mapping from C∗(φ,F) into LB∗∗(F̃).

Proof. (i) ⇒ (iii) We assume that φ is an extreme point in α-CP(A,F ;P ) and

Ṽφ
∗

T Ṽφ = 0 for some T ∈ C∗(φ,F). Since the map T 7→ Ṽφ
∗

T Ṽφ preserves
adjoint, we can assume that T is self-adjoint. Choose positive real numbers
µ, λ such that

1

4
I
F̃φ
≤ µT + λI

F̃φ
≤

3

4
I
F̃φ
.

If we put W = µT + λI
F̃φ

, then we have that

Ṽφ
∗

WṼφ = µṼφ
∗

T Ṽφ + λṼφ
∗

Ṽφ = λP̃ ,

so that 1
4P ≤ λP ≤ 3

4P . This implies that 0 < λ < 1. If φ1 and φ2 on A are
defined by

φ1(a) = Ṽφ
∗

Wπ̃φ(a)Ṽφ
∣∣
F

and φ2(a) = Ṽφ
∗

(I −W )π̃φ(a)Ṽφ
∣∣
F
,

then we have that φ = φ1 + φ2 and that λ−1φ1, (1− λ)
−1φ2 ∈ α-CP(A,F ;P ).

Since φ is an extreme point in α-CP(A,F ;P ), we have that

λ−1φ1 = (1− λ)−1φ2 = φ.

The equality φ1 = λφ implies that Ṽφ
∗

Wπ̃φ(a)Ṽφ = λṼφ
∗

π̃φ(a)Ṽφ for all a ∈ A.
Hence we obtain from Theorem 4.4 that W = λI

F̃φ
, so that T = 0.

(iii) ⇒ (ii) Suppose that the map T 7→ Ṽφ
∗

T Ṽφ is injective on C∗(φ,F). To

show the injectivity of the map T 7→ Ṽφ
∗

T Ṽφ|F , we assume that

Ṽφ
∗

T Ṽφ|F = 0 for some T ∈ [0, I]φ.

Since Ṽφ
∗

T Ṽφ|F is an operator in LB(F), by the construction (1) in Remark 4.1,

we can easily see that Ṽφ
∗

T Ṽφ is the unique extension of Ṽφ
∗

T Ṽφ|F . Therefore,

we have that Ṽφ
∗

T Ṽφ = 0, which implies that T = 0.

(ii) ⇒ (i) Suppose that the map T 7→ Ṽφ
∗

T Ṽφ|F is injective on [0, I]φ. For
any φ1, φ2 ∈ α-CP(A,F ;P ), let φ = λφ1 + (1 − λ)φ2 with 0 ≤ λ ≤ 1. Since
φ ≥ λφ1 in α-CP(A,F), there exists an operator T1 ∈ [0, I]φ such that

λφ̃1(a) = Ṽφ
∗

T1π̃φ(a)Ṽφ for all a ∈ A.

Hence we have that λṼφ
∗

Ṽφ = λP̃ = λφ̃1(1A) = Ṽφ
∗

T1Ṽφ, which implies that
T1 = λI

F̃φ
. Therefore, we have that φ1 = φ and φ2 = φ. �

Lemma 4.7. Let φ ∈α-CP(A,F) with the minimal Krein quadruple (Fφ, Jφ,
πφ, Vφ). If S is in the commutant φ(A)′, then there exists an operator T ∈
πφ(A)

′ such that

TJφ = JφT, TVφ = VφS, V ∗
φ T = SV ∗

φ .
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Proof. The proof is a slight modification of the proof of [1, Theorem 1.3.1], but
we sketch a proof for the reader’s convenience.

Let ai ∈ A, ξi ∈ F with i = 1, . . . , n. We see that
∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

πφ(ai)VφSξi

∣∣∣∣∣

∣∣∣∣∣ ≤ ||S ||
∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

πφ(ai)Vφξi

∣∣∣∣∣

∣∣∣∣∣ .

Now let Fn = Cn ⊗ F , Sn = In ⊗ S ∈ LB(Fn) and Vφ,n = In ⊗ Vφ with the
identity In in Cn. We denote by πφ,n

πφ,n =




πφ(a1) πφ(a2) · · · πφ(an)
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 .

Then V ∗
φ,nπ

∗
φ,nπφ,nVφ,n ∈ LB(Fn) has the operator matrix (V ∗

φ πφ(ai)
∗πφ(aj)Vφ)

which commutes with S′. If we put Ξn = ξ1⊕· · ·⊕ ξn ∈ Fn, then we have that
∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

πφ(ai)VφSξi

∣∣∣∣∣

∣∣∣∣∣

2

≤ ||S ||
2

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

πφ(ai)Vφξi

∣∣∣∣∣

∣∣∣∣∣

2

.

The operator T :
∑n

i=1 πφ(ai)Vφξi 7→
∑n

i=1 πφ(ai)VφSξi extends uniquely to
an adjointable operator on Fφ and TJφ = JφT . By taking a = 1A, we obtain
that TVφξ = VφSξ and V ∗

φ Tπφ(a)Vφξ = SV ∗
φ πφ(a)Vφξ, which implies that

V ∗
φ T = SV ∗

φ . Moreover, T commute with πφ(A). �

The following corollary is a generalization of Corollary 1.4.7 in [1].

Corollary 4.8. Let φ be an extreme point of α-CP (A,F ; IF ) with the minimal
Krein quadruple (Fφ, Jφ, πφ, Vφ) and let Z be the center of A. Assume that
φ(Z) ⊆ φ(A)′ and Jφ ∈ πφ(Z)

′. Then φ(az) = φ(a)φ(z) for any a ∈ A, z ∈ Z.

Proof. Since φ ∈ α-CP (A,F ; IF ), we have that V ∗
φ Vφ = φ(1A) = IF . Thus,

Vφ is an isometry and VφV
∗
φ is a projection in LB(Fφ). For any z ∈ Z, we have

φ(z) ∈ φ(A)′. By Lemma 4.7, there exists T ∈ πφ(A)
′ such that TJφ = JφT ,

TVφ = Vφφ(z) and V
∗
φ T = φ(z)V ∗

φ . Hence we have that

(4.3) TVφV
∗
φ = Vφφ(z)V

∗
φ = VφV

∗
φ T.

On the other hand, it follows from assumption that πφ(z) ∈ πφ(A)
′ and

πφ(z)Jφ = Jφπφ(z). Hence, we can easily see that π̃φ(z) ∈ C
∗(φ,F). Moreover,

by Theorem 4.6 we have that V ∗
φ πφ(z)Vφ = φ(z) = V ∗

φ TVφ, which implies that

π̃φ(z) = T̃ . Then, by (4.3), π̃φ(z) commutes with ṼφṼφ
∗

, and then

φ̃(az) = Ṽφ
∗

π̃φ(a)π̃φ(z)Ṽφ = Ṽφ
∗

π̃φ(a)ṼφṼφ
∗

π̃φ(z)Ṽφ = φ̃(a)φ̃(z).

Hence we get the equality φ(az) = φ(a)φ(z) for a ∈ A and z ∈ Z. �
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