• Title/Summary/Keyword: knot group

Search Result 34, Processing Time 0.027 seconds

Monodromy Groups on Knot Surgery 4-manifolds

  • Yun, Ki-Heon
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.603-614
    • /
    • 2013
  • In the article we show that nondieomorphic symplectic 4-manifolds which admit marked Lefschetz fibrations can share the same monodromy group. Explicitly we prove that, for each integer g > 0, every knot surgery 4-manifold in a family {$E(2)_K{\mid}K$ is a bered 2-bridge knot of genus g in $S^3$} admits a marked Lefschetz fibration structure which has the same monodromy group.

SIMPLE LOOPS ON 2-BRIDGE SPHERES IN HECKOID ORBIFOLDS FOR THE TRIVIAL KNOT

  • Lee, Donghi;Sakuma, Makoto
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.717-728
    • /
    • 2016
  • In this paper, we give a necessary and sufficient condition for an essential simple loop on a 2-bridge sphere in an even Heckoid orbifold for the trivial knot to be null-homotopic, peripheral or torsion in the orbifold. We also give a necessary and sufficient condition for two essential simple loops on a 2-bridge sphere in an even Heckoid orbifold for the trivial knot to be homotopic in the orbifold.

A GEOMETRIC REALIZATION OF (7/3)-RATIONAL KNOT

  • D.A.Derevnin;Kim, Yang-Kok
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.345-358
    • /
    • 1998
  • Let (p/q,n) denote the orbifold with its underlying space $S^3$ and a rational knot or link p/q as its singular set with a cyclic isotropy group of order n. In this paper we shall show the geometrical realization for the case (7/3,n) for all $n \geq 3$.

  • PDF

On the Polynomial of the Dunwoody (1, 1)-knots

  • Kim, Soo-Hwan;Kim, Yang-Kok
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.223-243
    • /
    • 2012
  • There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]). We study the polynomial(called the Dunwoody polynomial) for the (1, 1)-knot obtained by the certain cyclically presented group of the Dunwoody 3-manifold. We prove that the Dunwoody polynomial of (1, 1)-knot in $\mathbb{S}^3$ is to be the Alexander polynomial under the certain condition. Then we find an invariant for the certain class of torus knots and all 2-bridge knots by means of the Dunwoody polynomial.

Expression Analysis of Sweetpotato Sporamin Genes in Response to Infection with the Root-Knot Nematode Meloidogyne incognita

  • Jung-Wook Yang;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.163-168
    • /
    • 2023
  • Sweetpotato (Ipomoea batatas [L.]) is a globally important root crop cultivated for food and industrial processes. The crop is susceptible to the root-knot nematode (RKN) Meloidogyne incognita, a major plant-parasitic RKN that reduces the yield and quality of sweetpotato. Previous transcriptomic and proteomic analyses identified several genes that displayed differential expression patterns in susceptible and resistant cultivars in response to M. incognita infection. Among these, several sporamin genes were identified for RKN resilience. Sporamin is a storage protein primarily found in sweetpotato and morning glory (Ipomoea nil). In this study, transcriptional analysis was employed to investigate the role of sporamin genes in the defense response of sweetpotato against RKN infection in three susceptible and three resistant cultivars. Twenty-three sporamin genes were identified in sweetpotato and classified as group A or group B sporamin genes based on comparisons with characterized sweetpotato and Japanese morning glory sporamins. Two group A sporamin genes showed significantly elevated levels of expression in resistant but not in susceptible cultivars. These results suggest that the elevated expression of specific sporamin genes may play a crucial role in protecting sweetpotato roots from RKN infection.

Occurrence of the Root-Knot Nematode species in Vegetable Crops in Souss Region of Morocco

  • Janati, Soukaina;Houari, Abdellah;Wifaya, Ahmed;Essarioui, Adil;Mimouni, Abdelaziz;Hormatallah, Abderrahim;Sbaghi, Mohamed;Dababat, Abdelfattah A.;Mokrini, Fouad
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • Root-knot nematodes 'Meloidogyne spp' are the most destructive group of plant parasitic nematodes causeing serious losses in vegetables crops and this damages worsened when crops grown under greenhouses conditions. In this sutdy, the distribution and characterization of root-knot nematode species collected from the Souss region of Morocco where vegetables crops intensively cultivated were determined by using both morphological and molecular tools. Out of the 110 samples collected from different greenhouses 91 (81.7%) were found to be infested with root-knot nematodes. Thirty-seven populations of root-knot nematodes were morphologically identified based on perineal patterns as well as molecularlly using species-specific primers. The obtained results indicated that Meloidogyne javanica and M. incognita were identified in 86.4% and 13.5% of the total populations, respectively. The lowest incidence of root-knot nematodes (64%) was found in Toussous, whereas the highest frequencies of 100% and 90% were detected in Taddart and Biogra, respectively. As the majority of the samples have been infested with Meloidogyne species; this indicates that there is an urgent need to provide farmers with a proper control strategy.

CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS WITH TRIVIAL ALEXANDER POLYNOMIAL

  • Kanenobu, Taizo;Sumi, Toshio
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.591-604
    • /
    • 2018
  • We consider a family of ribbon 2-knots with trivial Alexander polynomial. We give nonabelian SL(2, C)-representations from the groups of these knots, and then calculate the twisted Alexander polynomials associated to these representations, which allows us to classify this family of knots.

NEW FAMILIES OF HYPERBOLIC TWISTED TORUS KNOTS WITH GENERALIZED TORSION

  • Keisuke, Himeno;Masakazu, Teragaito
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.203-223
    • /
    • 2023
  • A generalized torsion element is an obstruction for a group to admit a bi-ordering. Only a few classes of hyperbolic knots are known to admit such an element in their knot groups. Among twisted torus knots, the known ones have their extra twists on two adjacent strands of torus knots. In this paper, we give several new families of hyperbolic twisted torus knots whose knot groups have generalized torsion. They have extra twists on arbitrarily large numbers of adjacent strands of torus knots.

Morphometric Characterisation of Root-Knot Nematode Populations from Three Regions in Ghana

  • Nyaku, Seloame Tatu;Lutuf, Hanif;Cornelius, Eric
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.544-554
    • /
    • 2018
  • Tomato (Solanum lycopersicum) production in Ghana is limited by the root-knot nematode (Meloidogyne incognita, and yield losses over 70% have been experienced in farmer fields. Major management strategies of the root-knot nematode (RKN), such as rotation and nematicide application, and crop rotation are either little efficient and harmful to environments, with high control cost, respectively. Therefore, this study aims to examine morphometric variations of RKN populations in Ghana, using principal component analysis (PCA), of which the information can be utilized for the development of tomato cultivars resistant to RKN. Ninety (90) second-stage juveniles (J2) and 16 adult males of M. incognita were morphometrically characterized. Six and five morphometric variables were measured for adult males and second-stage juveniles (J2) respectively. Morphological measurements showed differences among the adult males and second-stage juveniles (J2). A plot of PC1 and PC2 for M. incognita male populations showed clustering into three main groups. Populations from Asuosu and Afrancho (Group I) were more closely related compared to populations from Tuobodom and Vea (Group II). There was however a single nematode from Afrancho (AF4) that fell into Group III. Biplots for male populations indicate, body length, DEGO, greatest body width, and gubernaculum length serving as variables distinguishing Group 1 and Group 2 populations. These same groupings from the PCA were reflected in the dendogram generated using Agglomerative Hierarchical Clustering (AHC). This study provides the first report on morphometric characterisation of M. incognita male and juvenile populations in Ghana showing significant morphological variation.