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Abstract. In the article we show that nondiffeomorphic symplectic 4-manifolds which

admit marked Lefschetz fibrations can share the same monodromy group. Explicitly

we prove that, for each integer g > 0, every knot surgery 4-manifold in a family

{E(2)K |K is a fibered 2-bridge knot of genus g in S3} admits a marked Lefschetz fibra-

tion structure which has the same monodromy group.

1. Introduction

Seiberg-Witten invariants are one of the most powerful invariants in the classi-
fication of smooth 4-manifolds and Fintushel-Stern’s knot surgery method is one of
the most effective methods to modify smooth structures on a given 4-manifold. But
Seiberg-Witten invariants are not complete invariants and there are known examples
of nondiffeomorphic symplectic 4-manifolds which share the same Seiberg-Witten
invariants [3, 15].

R. Fintushel and R. Stern showed that Seiberg-Witten invariants of knot surgery
4-manifold

E(2)K = E(2)]F=mK×S1(MK × S1)

can be computed by using the Alexander polynomial of the related knot K [2]. If we
restrict our attention to a fibered knot K, then E(2)K naturally has a symplectic
structure by a result of R. Gompf [6]. Since there are infinitely many fibered knots of
genus g ≥ 2 which share the same Alexander polynomial, we could have an infinite
family of symplectic 4-manifolds which share the same Seiberg-Witten invariants.
But most of these manifolds cannot be distinguished in smooth category even though
they are expected to be nondiffeomorphic each other.

On the one hand, by a result of S. Donaldson and R. Gompf [7], a symplectic
4-manifold is characterized by its Lefschetz pencil or Lefschetz fibration structure.
It is also well known that a Lefschetz fibration over S2 with fiber genus bigger than
one is characterized by its monodromy factorization [12]. Moreover, R. Fintushel
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and R. Stern [4] figured out a Lefschetz fibration structure on E(2)K and its explicit
monodromy factorization was known [17]. So it is very natural to ask whether one
can define an invariant coming from monodromy factorization. A conjugacy class
of a monodromy group, which is a subgroup of the mapping class group generated
by each single letter in monodromy factorization, is a well-defined invariant of a
Lefschetz fibration up to Lefschetz fibration isomorphism. By using this fact, we
could give a family of simply connected symplectic 4-manifolds which have more
than one inequivalent Lefschetz fibration structures [13, 14].

In this article, we show that this conjugacy class of a monodromy group is a very
rough invariant and there is a family of knot surgery 4-manifolds which share the
same conjugacy class of monodromy group even though they are not diffeomorphic
each other.

Theorem 1.1. For each positive integer g > 0, every knot surgery 4-manifold
lying in {E(2)K |K is a fibered 2-bridge knot of genus g in S3} admits a marked
Lefschetz fibration structure which shares the same monodromy group.

In [15], we constructed a family of smooth 4-manifolds which share the same
Seiberg-Witten invariants even though they are not diffeomorphic each other. Such
examples come from a family of fibered 2-bridge knotsK(n, i) with the same Alexan-
der polynomial (Definition 3.4.) and they are distinguished by using a covering
method. So it may also be possible to distinguish

{E(2)K(n,i)|n ∈ Z+, i = 0, 1, · · · , 2n − 1}

in smooth category even though we don’t know the answer yet.

Corollary 1.2. For each integer n ≥ 1 and i = 0, 1, 2, · · · , 2n−1, every knot surgery
4-manifold E(2)K(n,i) admits a marked monodromy factorization which shares the
same monodromy group.

One the other hand, R. Fintushel and R. Stern [4] constructed various families
of 4-manifolds which share the same Seiberg-Witten invariants. One of them is

Y (2 : K,K ′) = E(2)K]Σ2g+1E(2)K′

where K and K ′ are fibered knots of genus g. In [14], we proved that smooth
structure of Y (2 : K,K ′) does not determine the knot type of K and K ′. Such
examples are constructed by using a pair of Kanenobu’s knots. In this article, we
also show that Y (2 : K,K ′) are diffeomorphic each other for any given pair of
fibered 2-bridge knots K and K ′ of same genus.

Corollary 1.3. For any fibered 2-bridge knots K and K ′ of the same genus g > 0,

Y (2;K,K ′) = E(2)K]Σ2g+1
E(2)K′

are all diffeomorphic to each other.
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2. Lefschetz Fibration and Its Monodromy Factorization

In the section we will briefly review some well-known facts about symplectic
Lefschetz fibration and its monodromy factorization.

Definition 2.1. Let X be a compact smooth oriented 4-manifold and B be a
compact oriented smooth two manifold. A smooth map f : M → B is a Lefschetz
fibration of genus g if

(1) f−1(∂B) = ∂X

(2) f has finitely many and nonempty set of critical values

{b1, b2, · · · , bn} ⊂ Int(B)

and f is a smooth genus g fiber bundle over B − {b1, b2, · · · , bn}
(3) there is unique critical point pi in f−1(bi) and f is locally written as

f(z1, z2) = z2
1 + z2

2

(4) we also assume that there is no −1 sphere on each f−1(bi).

Definition 2.2. For a given Lefschetz fibration f : X → S2 with n singular values,
we can consider X as

(F ×D2) ∪ (h2
1 ∪ h2

2 ∪ · · · ∪ h2
n) ∪ (F ×D2)

where F is a closed oriented Riemann surface and h2
i is a 4-dimensional two handle

D2 ×D2 whose attaching sphere is a simple closed curve ci on F so that

tcntcn−1
· · · tc2tc1

is the identity element in the surface mapping class group Mod(F ). This ordered
sequence of right handed Dehn twists is called monodromy factorization of the
Lefschetz fibration and we denote it by tcn · tcn−1

· · · tc2 · tc1 .

It is known that a Lefschetz fibration is characterized by its monodromy factor-
ization, an ordered sequence of right handed Dehn twists [9, 12]. A right handed
Dehn twist along a simple closed curve c is denoted by tc. In the article we use
usual function notation, i.e. tctd means that we apply td first and then apply tc.

For any element f ∈ Mod(F ) and a simple closed curve c on F ,

f(tc) = ftcf
−1 = tf(c).

A monodromy factorization is well defined up to Hurwitz equivalences which
come from a choice of Hurwitz system and simultaneous conjugation equivalences
which come from a choice of generic fiber of the Lefschetz fibration.

Definition 2.3. Two monodromy factorizations W1 and W2 are Hurwitz equiva-
lence, denoted by W1 ∼W2, if W1 can be changed to W2 in finitely many steps by
using the following two operations:
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(1) Hurwitz move: tcn · ... · tci+1
· tci · ... · tc1 → tcn · ... · tci+1

(tci) · tci+1
· ... · tc1

(2) inverse Hurwitz move: tcn · ... · tci+1 · tci · ... · tc1 → tcn · ... · tci · t−1
ci (tci+1) · ... · tc1 .

The simultaneous conjugation equivalence of two monodromy factorizations is
given by

tcn · tcn−1 · ... · tc2 · tc1 ≡ f(tcn) · f(tcn−1) · ... · f(tc2) · f(tc1)

for some f ∈ Mod(F ). We will consider f(wk · ... ·w2 ·w1) as f(wk) · ... ·f(w2) ·f(w1).

Definition 2.4. [12] Two Lefschetz fibrations f : M → B, f ′ : M ′ → B′ are
isomorphic if there are orientation preserving diffeomorphisms H : M → M ′ and
h : B → B′ such that

M
H−−−−→ M ′

f

y yf ′
B

h−−−−→ B′

commutes i.e f ′ ◦H = h ◦ f .

Theorem 2.5. [9, 12] Let Xi → CP1, i = 1, 2, be Lefschetz fibrations of genus g
with monodromy factorization Wi corresponding to a fixed generic fiber Fi. Then the
two Lefschetz fibrations are isomorphic if and only if W1 can be changed to W2 by a
finite sequence of Hurwitz equivalences and simultaneous conjugation equivalences.

From the above theorem, we can define a map from the set of all isomorphic
class of genus g Lefschetz fibration over S2 to the set of all conjugacy classes of
subgroups of mapping class group Mod(Σg) of oriented closed surface of genus g.

Definition 2.6. For a given Lefschetz fibration f : X → S2 with n singular values
and generic fiber F , let us fix an identification of generic fiber F with oriented
closed Riemann surface Σg (which is called marked Lefschetz fibration), then its
monodromy factorization is given by tcn · tcn−1

· · · tc2 · tc1 by using isotopy class of
simple closed curves {c1, c2, · · · , cn} on Σg. The subgroup of Mod(Σg) generated by
{tc1 , tc2 , · · · , tcn} is called the monodromy group of the marked Lefschetz fibration
and it is denoted by

GF (tcn · tcn−1 · · · tc2 · tc1).

Remark 2.7. Hurwitz move and inverse Hurwitz move does not change monodromy
group. Two marked Lefschetz fibrations are isomorphic if one monodromy factor-
ization can be changed to the other monodromy factorization by a finite sequence
of Hurwitz equivalences. So in the case two corresponding monodromy groups are
the same.

Now we will briefly explain how to consider knot surgery 4-manifold E(n)K
with fibered knot K can be considered as a Lefschetz fibration.
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Definition 2.8. Let M(n, g) be the desingularization of the two fold covering of
Σg × S2 with branch set

(Σg × {2 pts}) ∪ ({2n pts} × S2).

Then this manifold is diffeomorphic to (Σg × S2)]4nCP2
.

If we consider it as a singular genus (2g + n − 1) fibration over S2 with two
singular fibers, then after a local perturbation we get a Lefschetz fibration with
2(2g+4n−2) singular values by computing the Euler number and signature of (Σg×
S2)]4nCP2

. It is known to various authors [12, 11, 8, 16] that the corresponding
involution can be written as a product of right handed Dehn twists.

B0 B1 B2 B3 B4

b′3

b3

B5

Figure 1: Simple closed curves for Korkmaz word: g = 2 and n = 2 case

Theorem 2.9. [11] Monodromy of M(2, g) is given by η2
g where

ηg = tB0 · tB1 · · · tB2g+1 · t2bg+1
· t2b′g+1

.

Theorem 2.10. [4, 17] Let K be a fibered knot of genus g such that

S3 \ ν(K) = ([0, 1]× Σ1
g)/(1,x)∼(0,φK(x))

and let
ΦK = φK]id]id : Σg]Σ1]Σg → Σg]Σ1]Σg,

then monodromy factorization of E(2)K is given by ΦK(η2
g) · η2

g .

3. Monodromy Group

Assume that p and q are relatively prime integers with p odd. Let us consider
a 2-bridge knot b(p, q) which is defined as follows:
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Definition 3.1.[1] A 2-bridge knot b(p, q) is of the form

C(n1,−n2, n3,−n4, · · · , (−1)k−1nk)

as in Figure 2, where

q

p
=

1

n1 + 1
n2+ 1

... 1
nk−1+ 1

nk

= [n1, n2, · · · , nk].

(a) A 2-bridge knot with k odd

(b) A 2-bridge knot with k even

n1

n1

n2

n2

nk−1

nk

nk

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

Figure 2: A 2-bridge knot C(n1, n2, · · · , nk)

It is a 4-plat whose defining braid is

σn1
2 σ−n2

1 σn3
2 σ−n4

1 · · ·σ−nk
1 if k is even,

σn1
2 σ−n2

1 σn3
2 σ−n4

1 · · ·σnk
2 if k is odd.

Here σi is a standard braid generator as in Figure 10.3 of [1]. We now denote

D(n1, n2, · · · , nk) = C(2n1, 2n2, · · · , 2nk).

Theorem 3.2. Let K be any fibered 2-bridge knot of genus g > 0 and

Kg = D(−1,−1, · · · ,−1︸ ︷︷ ︸
2g

).
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Then E(2)K and E(2)Kg
admit marked monodromy factorizations whose mon-

odromy groups are the same.

Proof. It is known [5, 10] that any fibered 2-bridge knot of genus g is of the form

D(ε1, ε2, · · · , ε2g−1, ε2g)

where each εi ∈ {+1,−1}. Since a Seifert surface of D(ε1, ε2, · · · , ε2g−1, ε2g) with
εi ∈ {+1,−1} can be obtained by a sequence of plumbings of positive or negative
Hopf band corresponding to εi = +1 or εi = −1 and since a positive Hopf band
corresponds to a right handed Dehn twist along the core circle of Hopf band and
negative Hopf band corresponds to a left handed Dehn twist, we get

ΦD(ε1,ε2,··· ,ε2g−1,ε2g) = tε2gc2g t
ε2g−1
c2g−1

tε2g−2
c2g−2

· · · tε2c2t
ε1
c1

where simple closed curves ci are as in Figure 3.

c2 c4 c2g

c3 c2g−1c1

Figure 3: Simple closed curves for monodromy of 2-bridge knot

Let H be the subgroup of Mod(Σ2g+1) which is generated by

{tBi
, tcj , tbg+1

, tb′g+1
| i = 0, 1, 2, · · · , 2g + 1, j = 1, 2, · · · , 2g}

by using the notation as in Figure 1.
Let us first show that GF (ΦKg (η2

g) · η2
g) = H.

Since ΦKg = t−1
c2g t
−1
c2g−1

t−1
c2g−2

· · · t−1
c2 t
−1
c1 ∈ H, we get

ΦKg (tBi) = ΦKg tBjΦ−1
Kg
∈ H for each i = 0, 1, · · · , 2g + 1

and ΦKg
(tbg+1

) = tbg+1
, ΦKg

(tb′g+1
) = tb′g+1

. So GF (ΦKg
(η2
g) · η2

g) ≤ H.

Now we will prove that H ≤ GF (ΦKg
(η2
g) · η2

g). To do this, we need to check
that

tcj ∈ GF (ΦKg (η2
g) · η2

g)

for each j = 1, 2, · · · , 2g. Let us observe from Figure 4 that

ΦKg (Bj) = t−1
c2g t
−1
c2g−1

t−1
c2g−2

· · · t−1
c2 t
−1
c1 (Bj)(3.1)

= t−1
c2g t
−1
c2g−1

· · · t−1
cj+1

t−1
cj (Bj) because ci ∩Bj = ∅ for i < j

= t−1
c2g t
−1
c2g−1

· · · t−1
cj+1

(t−1
cj (Bj))

= t−1
cj (Bj) because t−1

cj (Bj) ∩ ci = ∅ for j < i.
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t−1
c2i+1

(B2i+1)

tc2i+1 (B2i)

tc2i+1 (B2i+1)

tc2i (B2i)

B2i+1c2i+1
B2i

c2i

Figure 4: tc2i(B2i), tc2i+1(B2i) and t±1
c2i+1

(B2i+1)

Therefore we get

(3.2) cj = t−1
Bj

(t−1
cj (Bj)) = t−1

Bj
(ΦKg

(Bj))

as in Figure 5. Since t±1
Bj
, ΦKg

(Bj) ∈ GF (ΦKg
(η2
g) · η2

g), it implies

(3.3) tcj = t−1
Bj

(ΦKg
(tBj

)) = t−1
Bj

ΦKg
(tBj

)tBj
∈ GF (ΦKg

(η2
g) · η2

g)

for each j = 1, 2, · · · , 2g. So we get

H ≤ GF (ΦKg (η2
g) · η2

g).

Now we will show that

GF (ΦK(η2
g) · η2

g) = H

for any fibered 2-bridge knot K = D(ε1, ε2, · · · , ε2g−1, ε2g).
If εi = −1, then by the same method of equation (3.1) we get ΦK(Bi) = t−1

ci (Bi)

and ci = t−1
Bi

(ΦK(Bi)). So by the same way as in equation (3.3) we get

(3.4) tci ∈ GF (ΦK(η2
g) · η2

g)
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t−1
c2i (B2i)

B2i

t−1
B2i

(t−1
c2i (B2i))

c2i

Figure 5: t−1
Bj

(t−1
cj (Bj)) is isotopic to cj for j = 2i ( same for j = 2i+ 1)

whenever εi = −1.
Now let us consider the case εi0 = +1 and εj = −1 for each i0 + 1 ≤ j ≤ 2g.

Then tcj ∈ GF (ΦK(η2
g) · η2

g) for each j = i0 + 1, i0 + 2, · · · , 2g by equation (3.4).
Therefore

(tci0 t
εi0−1
ci0−1 · · · tε2c2t

ε1
c1)(tB`

) ∈ GF (ΦK(η2
g) · η2

g)

for each ` = 0, 1, · · · , 2g + 1. Because cj ∩Bi0 = ∅ for each j = 1, 2, · · · , i0 − 1, we
get

(tci0 t
εi0−1
ci0−1 · · · tε2c2t

ε1
c1)(Bi0) = tci0 (Bi0)

and
ci0 = tBi0

(tci0 (Bi0)) = tBi0
(tci0 t

εi0−1
ci0−1 · · · tε2c2t

ε1
c1(Bi0))

as in Figure 6.
Therefore

(3.5) tci0 ∈ GF (ΦK(η2
g) · η2

g).

Now we will use mathematical induction argument. Suppose that εi = +1 for
i = i0, i1, · · · , iN which satisfies 1 ≤ iN < · · · < i1 < i0 ≤ 2g and all other εi = −1.
Then by Equations (3.4) and (3.5),

tci ∈ GF (ΦK(η2
g) · η2

g)

for each j = i1 + 1, i1 + 2, · · · , 2g. So we can apply the same method as before and
we get tci1 ∈ GF (ΦK(η2

g) · η2
g).

By repeating the same method, we get

(3.6) tcij ∈ GF (ΦK(η2
g) · η2

g)



612 Ki-Heon Yun

tc2i+1 (B2i+1)

B2i+1

tB2i+1
(tc2i+1 (B2i+1))

Figure 6: tBj (tcj (Bj)) is isotopic to cj for j = 2i+ 1 (same for j = 2i)

for each j = 0, 1, 2, · · · , N at which εij = +1.
So Equations (3.4) and (3.6) imply that tci ∈ GF (ΦK(η2

g) · η2
g) for each i =

1, 2, · · · , 2g. Therefore we get

H = GF (ΦD(ε1,ε2,··· ,ε2g−1,ε2g)(η
2
g) · η2

g).

2

Remark 3.3. Note that smooth 4-manifolds with the same Seiberg-Witten in-
variants are very hard to prove whether they are diffeomorphic or not in general.
Regarding this direction, R. Fintushel and R. Stern first constructed a pair of non-
diffeomorphic 4-manifolds which share the same Seiberg-Witten invariants [3] by
using covering method at the price of big fundamental group and recently we ex-
tended such family of examples [15]. A special family of 2-bridge knots in Definition
3.4. are the main ingredient when we constructed such examples.

Definition 3.4. [15] Let us define inductively a family of 2-bridge knots as follows:

(a) Set W (0, 0) = 1, 1 and K(0, 0) = D(W (0, 0)).

(b) For each integer n > 0 and i =
∑n−1
j=0 εj2

j with εj ∈ {0, 1}, define a list
W (n, i) by

W (n−1,

n−2∑
j=0

εj2
j), (−1)εn−1+1,−W (n−1,

n−2∑
j=0

εj2
j), (−1)εn−1+1,W (n−1,

n−2∑
j=0

εj2
j)

and K(n, i) = D(W (n, i)).
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Corollary 3.5. For each integer n ≥ 1 and i = 0, 1, 2, · · · , 2n−1, every knot surgery
4-manifold E(2)K(n,i) admits a marked monodromy factorization which shares the
same monodromy group.

Proof. Since each K(n, i) is a fibered 2-bridge knot, we get the result directly from
Theorem 3.2. 2

Remark 3.6. Even though we could not distinguish E(2)K(n,i) by using mon-
odromy group, we expect that these 4-manifolds can be distinguished in smooth
category by using other new invariants.

Corollary 3.7. For any fibered 2-bridge knots K and K ′ of the same genus g > 0,

Y (2;K,K ′) = E(2)K]Σ2g+1
E(2)K′

are all diffeomorphic to each other.

Proof. It is shown in [17] that if ϕ ∈ GF (ΦK(η2
g) · η2

g), then

ΦK(η2
g) · η2

g ·Ψ(η2
g) · η2

g ∼ ΦK(η2
g) · η2

g · (ϕ±1Ψ)(η2
g) · η2

g

for any Ψ ∈ Mod(Σ2g+1). Theorem 3.2 implies that

ΦKg
, ΦK , ΦK′ ∈ H = GF (ΦK(η2

g) · η2
g) = GF (ΦKg

(η2
g) · η2

g)

for any fibered 2-bridge knot K and K ′, so we get

ΦK(η2
g) · η2

g · ΦK′(η2
g) · η2

g ∼ ΦK(η2
g) · η2

g · η2
g · η2

g

∼ ΦK(η2
g) · η2

g · ΦKg
(η2
g) · η2

g

∼ η2
g · η2

g · ΦKg
(η2
g) · η2

g

∼ ΦKg (η2
g) · η2

g · η2
g · η2

g .

If two 4-manifolds have isomorphic Lefschetz fibration structures, then they are
diffeomorphic because they are related by a sequence of 2-handle moves. Therefore
we get the conclusion. 2

Acknowledgements. A part of the article was written during his visit at
MPIM-Bonn and KIAS. This work was supported by a National Research Founda-
tion of Korea(NRF) Grant funded by the Korean government (2009-0066328 and
2012R1A1B4003427).

References

[1] G. Burde and H. Zieschang, Knots, second ed., de Gruyter Studies in Mathematics,
vol. 5, Walter de Gruyter & Co., Berlin, 2003.



614 Ki-Heon Yun

[2] R. Fintushel and R. Stern, Knots, links, and 4-manifolds, Invent. Math. 134(1998),
no. 2, 363–400.

[3] R. Fintushel and R. Stern, Nondiffeomorphic symplectic 4-manifolds with the same
Seiberg-Witten invariants, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom.
Topol., Coventry, 1999, pp. 103–111(electronic).

[4] R. Fintushel and R. Stern, Families of simply connected 4-manifolds with the same
Seiberg-Witten invariants, Topology 43(6)(2004), (6), 1449–1467.

[5] David Gabai and William H. Kazez, Pseudo-Anosov maps and surgery on fibred 2-
bridge knots, Topology Appl. 37(1)(1990), 93–100.

[6] R. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2)
142(3)(1995), 527–595.

[7] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, American Mathematical
Society, Providence, RI, 1999.

[8] Y. Gurtas, Positive Dehn Twist Expressions for some New Involutions in Mapping
Class Group, 2004, arXiv:math.GT/0404310.

[9] A. Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific
J. Math. 89(1)(1980), 89–104.

[10] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996, Translated
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