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ABSTRACT. In this note, we study a monodromy map of a fibered 2-bridge knot. We show
the monodromy map of a fibered 2-bridge knot as an element in the automorphism group
of a free group.

1. Introduction

Let ¥4, be a compact oriented connected surface of genus g with 1 boundary
components. Let My ; be the mapping class group of 3,1 :

MgJ = 7T0(Diﬁ+(2g71, 82971)).
Namely,
Mg1={p:34,1 — Xg4,1 : orientation preserving diffeomorphism such that (p‘aggJ = idaggyl}
/isotopy fixing 0%, 1 pointwise

The mapping class group My 1 acts on 7 := 71 (g1, %), where * is a point in 0%, ;.
That is to say, an element of M, ; can be regarded as an element of Aut(w). To be
precise, it is known (eg. [12]) that , we have

Mg = {p € Aut(m) | »(¢) = (},
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928 Hiroshi Goda and Masaaki Suzuki

where ( is an element in 7, which is parallel to 0%, ; ignoring the orientation.

Let K be an oriented link in the 3-sphere S3, and R a Seifert surface of K. The
exterior of K, say F(K), is S3—IntN (K ) where N (K ) means a regular neighborhood
of K in S* and Int is its interior. Set R = RN E(K). If E(K) is a fiber bundle
over the circle S' with fiber R, then K is called a fibered knot. It is known that R
is a minimal genus Seifert surface in such case. Thus, if K is a fibered knot, E(K)
is R x [0,2x] with an identification according to a diffeomorphism h : R — R by
which R x {0} is attached to R x {27}. This map is called a monodromy of K. Set
R :=%,,, then we may regard h as an element of My ;.

In this note, we focus on fibered 2-bridge knots. We study the monodromy
maps of a fibered 2-bridge knot as an element of Aut(n). Torus knots are fibered,
and torus knots of type T(p,2) (p : odd) are 2-bridge. We study these knots in
Section 3. General case is discussed in Section 4. We put a list of the monodromies
of fibered 2-bridge knots with up to 12 crossings in Section 5.

The authors thank Professor Kunio Murasugi for his helpful comments. The
authors also thank Professor Makoto Sakuma for informing the contents of the

paper [8].

2. Fibered 2-Bridge Links

Let L be a 2-bridge link S(gq,p) in Schubert’s notation. Here, p and ¢ are
coprime integers, and ¢ is odd. It is known that S(g,p) and S(¢’,p’) are equivalent
if and only if ¢ = ¢ and p’ = p*! (mod ¢), and that S(g, —p) gives the mirror image
of S(q,p).

Consider a subtractive continued fraction expansion of p/q (see [5]):

:T+[blab23"'abn]:T+ 1 )

p 1
q by —

where r, b; € Z and b; # 0. The length of this expansion is n. Then L is the
boundary of the surface obtained by plumbing n bands in a row, the i-th band has
b; half-twists (right-handed if b; > 0 and left-handed if b; < 0). If some b; is odd,
the expansion is said to be of odd type. Otherwise, it is said to be even type. Any
fraction is presented by both odd type and even type. In this paper, an expansion
always means a subtractive one. We note that the following equality:

1
b+ ——

ba+ [ pr— —

r+ [bla _an bSa _b47 R (_1)n_1bn] =7+

e

n

In what follows, we suppose that an expansion is even type. Then, if the length of
an expansion is even (odd resp.), L becomes a knot (2-component link resp.) and
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the genus of L is equal to n/2 ((n — 1)/2 resp.) by [9]. Further, we suppose p < g,
then r = 0.

It is known that L is fibered if and only if |b;] = 2 ([2], [10]), namely L is
obtained from a disk by n Hopf plumbings. The monodromy of the right-handed
Hopf band (left-handed Hopf band resp.) is right Dehn twist Dg (left Dehn twist
Dy, resp.), and it is known that the monodromy of L is D, D,,_1 --- Dy where D;
is Dp or Dy, according to b; = 2 or b; = —2 for each i, see Proposition 2 in [4].
Thus it is not difficult to treat the monodromy maps of fibered 2-bridge knots. In
particular, if all b; are the same sign, L becomes a torus knot of type T'(p,+2),
which we study in the next section.

Example 2.1. The knot 815 is S(29,12) in Schubert’s notation. Since 12/29 has
the following continued fraction expansion:

12 1

29 2+ 52—

2+ =1

= [27 _25 27 _2}7

the knot 815 can be regarded as the knot obtained by plumbings of the right-handed
Hopf band, the left-handed Hopf band, the right-handed Hopf band, and the left-
handed Hopf band, successively. See Figure 1.

Figure 1

3. Torus Knots

In this section, we study the monodromy of the torus knots of type T'(p,2)
(p > 3, odd). The torus knot of type T'(5,2) has a projection as illustrated in
Figure 2, and we denote by K the knot. Its minimal genus Seifert surface R has
genus 2, then we may take a set of generators of wl(R,?k), say {ai, as, ag, a4},
as in the right-hand side figure in Figure 2. Note that * is on the knot K. Let
E =53 —IntN(K), and we denote by D the meridian disk of the solid torus N (K)
containing %. Further, set R = RN E. Note that R and 9D intersects one point.
Let * be this point. One can view the monodromy as the automorphism of 71 (R, *)
obtained by pushing generators (with basepoint on OR) off the + side of R through
S3 — R and onto the — side of R where the basepoint travels along the meridian. We
draw the product manifold R x [—7/2,7/2] in E as illustrated in Figure 3. Here we
regard Rx {0} as R. Then we can consider the set of generators of w1 (Rx {m/2}, ™)
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(m1(R x {—m/2},%7) resp.) corresponding to {a1, az, a3, a4}, where ™ (x~ resp.)
is the point in (R x {m/2}) (O(R x {—m/2} resp.), corresponding to * x {w/2}
(xx{—m/2} resp.). Asillustrated in Figure 3, we denote the set by {a], a3 , a5, a]}
({a7, a3, a3, ag } resp.).

Figure 2

Figure 3

Since the torus knot K of type T'(p,2) is a fibered knot and R is the minimal
genus Seifert surface of K, E — IntN(R) is homeomorphic to R x [7/2,37/2], so
that we may suppose that R x {37/2} = R x {—n/2}. Now, we move a generator
aj (C R x {r/2}) toward R x {37/2} by an isotopy, in R x [r/2,37/2]. Note
that the starting and ending points of aj' are in *T and move on D — R so that
arrive at *~ by this isotopy. The movement of ai’,aéF ,ag' are similar, so we will
demonstrate the cases of aj and ajf. It is not difficult to see there is an isotopy
that we have aj C R x (7/2,37/2) as in the left-hand side figure in Figure 4.
Denote by ¢ this isotopy. We suppose that this a;' is in R x {w}. Moreover, we may
see aj in R x {37/2} by the next isotopy, say 7, as illustrated in the right-hand
side figure of Figure 4. Let a;’ﬂ/27a2+’7r, a;’gﬂ/Q be aj in R x {r/2}, R x {r}, R x
{37/2} respectively, then we can see that L(a;’ﬁ/z) =a]" = T_l(a;r’?m/?). Since
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TO L(a;’”/z) = a;’3ﬂ/2 is a simple closed curve on R x {—m/2}, it can be presented

by the set of generator {aj, a5, a3, a; } as an element of m (R x {—n/2},x7),
so that we have a;’?’ﬁ/z =ajay (a3) '(ay) '(a7)~!. By the same argument, we
F37/2 N1y Nel A3m/2 g N4 N1 ——
have : ay*™"? = a7 (ag) " May) 7!, 0?7 = ar ez ag (a3) " Hag) " Hag) Hap) Y,
ai’gﬂ/z = aj a, as a, . This means that the monodromy map of K may have the
presentation as an element of Aut(r(R,*)) as follows: a1 — ajay‘a;’, ay

-1 -1 -1 -1 -1 _—-1_-—1
a1a203 "Gy Q1 ", A3 F> 1020304 A3 Ay Gy, G4 —> 01020304.

Figure 4

By the same argument, we have:

Theorem 3.1. Let K be the torus knot of type T'(p,2) and R the minimal genus
Seifert surface. Let {a;} (i =1,2,...,p—1) be a set of generators of w1 (R, *). Then
the monodromy is given as follows:

i i
ai»—>HajHai_+117k (1<i<p-2)
=1 k=0

p—1
ap—1 — H a;
Jj=1

4. The Monodromies of Fibered 2-Bridge Knots

Let K be the 2-bridge knot of type (p,q), which has the following subtractive
continued fraction:
1
BZT"‘[blabQ?"'ubn}:r—F 1 ? (bi:even).
q b1 — [P p——
b3 —

Then n = 2g, where g is the genus of K. If the knot is fibered, |b;| = 2. Let R be
the minimal genus Seifert surface of K as illustrated in Figure 1. We take a set of
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generators of m1 (R, *) (a1, az,..., asg) as follows. Set the base point, a1 and as as
in Figure 5.

agi-1

Figure 5

Similarly, we define the generators ag;—1 and ag; (2 < i < g) asin Figure 5. (This
figure is the case of bg;_1 = 2,by; = —2.) The loop a;, starts the base point, goes
along the untwisted parts of the Hopf bands corresponding to b; (j = 1,2,...,k—1)
successively and the twisted part of the Hopf band corresponding to bx. Then it
goes back to the base point via the untwisted parts of the Hopf bands corresponding
tobj (j=k—1,k—2,...,1) again.

Since S3 — IntN(R) is the genus 2g handlebody, we may take (y1, 72, .., V24)
a set of generators of 71 (S® — Int N (R)) where «; is the loop that goes from the base
point to upper side and goes through the disk 4; and comes back to the base point.
Here v; N%; (i =1,2,...,2¢) is one point and v; N4; = 0 if ¢ # j. See Figure 6.

O O-®@

Figure 6

For example, in the case of the knot 84, the generators of m1 (R, %) can be seen
in Figure 7, then we have a; ~ 7{17273 and ai ~ '75174 as in Figure 8 by the same
argument in Section 3. Here A ~ B means A is homotopic to B in 1 (S® —Int N (R)).

In general, we have the following lemma as seen in Figure 9 where we draw
the case of cg;—1 = baj—1/2 = 1 and c¢9; = be;/2 = —1. Since the parts of aj[ (j =
2¢ — 1 or 2¢) which are not drawn in the figure run untwisted part of each Hopf
band, they do not affect the result.

Lemma 4.1.(Section 5 in [8]) Let K be a fibered 2-bridge knot of type S(q,p) and g

has the subtractive continued fraction [by,bs, ..., bag]. Set ¢; = b;/2, i.e., ¢; = +1.
For 1 <1i < 2g, we have:
ag,  ~ et g ~ Yy Y i,

2i—1

- ~ AL o c . — o ~C2i
Agi—1 ™~ Voi—2V2i—1 V2ir Qg3 ~ Vo
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Figure 8

C2i-1=1 C2i=-1

Figure 9
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where o = Yag+1 = 1.

Theorem 4.2. Under the same notations as in Lemma 4.1, the monodromy of K
is given explicitly by the following. If g =1, then a; — a1a5?, az — (a1a5?) “as.
For g > 2,

a1 — a1a5?
ag — (a1a5?) " “ag(a; agagt)
—C2i—2 coj .
A2i—1 W Qg5  G2—105; (2<i<yg)

—C2—2 C2;\—C24— —C24 C2i4+2\Co; .
agi = (ag; 5 *agi—1a5]") " 17 agi(ag;? agiy1a9; 15 ) (2<i<g-1)

—C2g-2 €29\ —cC2g—1
agg = (g% "agg-1054") 7 azg.

Proof. Just calculations using Lemma 4.1. Suppose ¢ = 1. By Lemma 4.1, af ~
Vi ad ~ s 2 a] ~ Ay and ay ~ 5 . Then we have af ~ a] (a5 )°? and
ag ~ (aj (a3 ))~a,, so that a; — ajas? and ag — (a1a3?) ~“'as. Suppose g > 2.
We have a] + a1a3’ via the same argument. Since az ~ 75 75*v4 and ay ~ v, “,
we have 75* ~ a3 (ag)® ~ (ay) a3 (a;)®. Because aj ~ ;' 7573 ~
(a1) ™ (a3 )((ay ) ~2az (a3 )*)®, then az — (a1ay’)”“az(ay “asag')®. For i
(2 <0< g) azy ~ 205 1Ya; ~ (ag;_5) " * a5, (az;). Hence agi—1
ag; % agi—1asi. For i(2 <i < g—1), a3; ~ (a3;,_,) " 'ay(a3;, ). So we
have the conclusion via the presentation of ag; , and a, 41+ Similarly we have the
case of agg. O

Let K be a fibered 2-bridge knot of type S(q, p) and % has the subtractive con-
tinued fraction [b1,bs,. .., bag], and R the minimal genus (genus 2g) Seifert surface

of K as above. From Theorem 4.2, we obtain the following matrix A as the trans-
formation matrix : Hy(R;Z) — H1(R;Z):

Ao
4> 1 0 0
c
A= - where Ay = 2 ,
: —C1 1-— C1C9 — C2C3 C3 C(C3C4
A2g74
Aoy
—Co; 1 Co; 0 0 .
A27; _ 21 2142 (1 S i S
C2iC2i+1  —C2i+1 1 — C2i11C2i42 — C2i42C2i43  C2i43  C2i+3C2it+4
—Cog— 1 c .
g—2),and Ayg_o = 292 1 %9 . By Milnor [7], Ag(t) =
C2g—2C2g—1 —C2g—1 — C2¢9—1C2¢g

det(tI — A), where I is the 2g x 2g identity matrix. By standard arguments of the
linear algebra, we have:
Corollary 4.3. Let K be a fibered 2-bridge knot as above. Then the coefficient of

t of the Alexander polynomial of K is —2g + Z c;icir1- That of the term t™
1<i<2g—1
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(2 <m < g) of the Alexander polynomial of K is given by the following:

=0
m—1 (—l)m_] m—1—j . )
+ ((m_])l 1T @e-5-19) > Ci10i1+10i2+10i2+2"'Cz’j+j—10ij+j)
j=1 i=0 1<iy <ig<---<i; <2g—j
+ > Ci1Cig+1Cig+1Cig+2 " " Cipytm—1Cip+m

1<iy <in < <im <29—m

Remark 4.4. In [6], Kanenobu gave an algorithm for calculating the Alexander
polynomial of a 2-bridge link using the continued fraction expansion. Fukuhara
[3] gave an explicit formula for the Alexander polynomial of a 2-bridge link using
elementary number theoretical functions.

Appendix: List of Monodromies

We put a list of the monodromies of fibered 2-bridge knots with up to 12 cross-
ings according to Theorem 4.2. A projection of each knot can be found in [1] and
[11]. We use the Schubert’s notation in Table I [1].

Knot Images of a1, a2,...,a2g
31 a1a2_1, ai
41 aray ', aza; tas
51 am;l, a1a4a§1a;1, agagail, asas
62 a1a2_1, agafla2a4a§1a2_1, agagogl7 a2a3
63 a1a2_1, a1a20304,A20304, a4_1a3_1a2_1a4
71 a1a;1, a1a4a§1a;1, azagall, azagaﬁaglazl, a4a5ag1, asas
e alagl, alazagail, agagail, a4a§1a;1a4
Tr a1a2_1, agaflagalla?)_laz_17 a2a304,a2030404
89 alagl, agaf1a2a4a§1a;1, agagall, agagaeaglazl, a4a5ag1, asas
87 a1a;1, a102a30a4, a20304, a;laglaglawg, a;la5a6, aglaglawe
89 am;l, alaglaglagl, 20304, 203040506, aila5a6, aglaglcuae
812 alaz_l, agaflagagagagl, czgag,cgl7 a4a3_1a2_1a4
91 aiay ,aiasaz ‘a, ', asaza; ', azaszasaz ‘ay
a4a50g ~, Q4050807 ag17 asarag -, a6ar
911 aray ', axai azazasas, azasas, ay 'az 'a; asas,ay asas,ag a; asag
917 alagl, agaflaga4a§la;1, a2a3a21, agagaglaglagl, a40506, 44050606
920 a1a2_1, alagagazl, agagall, a4a3_1a2_1a4a6a5_1a21, a4a5a6_1, asas
996 alagl, agaflagailaglagl, a2a304, 4203040506, a;1a5a6, aglag1a4a6
997 alagl, 1020304, 20304, a;laglagl%agl, a;la5ag1, agag1a4a6
931 am;l, 1020304, 20304, a;la§1a51a4a6agla4, a;lag,agl, aZlag,
102 alaz_l, agal_laga4a3_1a2_17 agag,all7 agagaeaglagl,

—1 -1 -1 —1
a4a5a6 ,a4a5a8a7 (16 ,a6a7a8 ,aeay




936

Hiroshi Goda and Masaaki Suzuki

105 am;l, a1a2a304, a2a304, a;laglaglag,ag,
a;lag,ag, aglagla4a7ag, ag ~aras, a;la;lagag
109 alagl, alazlaglagl, a2a304, 0203040506,
a, asae, g Qg a4a7a8,aglams,agla;laeag
1017 alagl, a1a4ag1a;l, agagagl, a2a3040506,
a4a50a6, Qg aglaz a7as,ag1a7as,a§1a;la6a8
1029 a1a2_1, agaflagagagazl, agagagl, a4a3_1a2_1a4a6a5_1a21, a4a5a6_1, asas
1041 a1a2_17 azaf1a2a4a§1a2_1, a2a3a4_1, azagmuz.r,agl7 a4(15a6_17 agaglallag
1042 atay ', a1a2a3a4, 020304, a; a3 'ay 'asag laz a4, a; asas,a; asascas
1043 alagl, alagagazl, agagazl, a4a§1a;1a4a4a5a6, a4a50a6, aglaglailas
1044 alagl, agaflagazlaglaz_l, a2a3a4, a2a3a4a4a6a5_1a4, a21a5a6_1, aZlag,
1045 a1a2_1, azaflagazlaglagl, a2a3a4, a2a3a4a5agl, a4_1a5a6_1, a6a5_1a4a6
1lagg alagl, azaflagagagagl, a2a3a471, a4a§1a51a4aglag1azl, a40a506, 44050606
11la121 alagl, aga;1a2aza3a4, a2a3a4, a21a§1a51a4aglagla4, a;1a5a6, a;lasa(;as
11la1s9 a1a2_1, agal_lagazagall, azagall, a4a3_1a2_1a4a4a5a6, asas0ae, aglaglazlae
1lai7a alagl, agaflagma;la;l, azagagl, azagagaglail,
a4a5(16_17 a4a506a708, AcA7AS, agla;laﬁ_lag
airs | a1a; ', a1a2a304, a2a304, 05 a3 a;  asas,
a;1a5a6, aglagla4a6aga;1a6, ag1a7a§1, ag1a7
1lai7s alagl, alaglaglagl, a2a304, 0203040506,
a, asa6,0g Qg a4a6a3a;1a6, aglcwagl, aglcw
11la177 alaQ_I, a1a4a3_1a;1, agagazl, a2a304050a6,
a4a506, aglaglazl%asa;lag, aglcwagl, ag1a7
1lai7o a1a2_1, agaf1a2a4a3_1a2_l, azagall, agagagas_lall,
a4a5a6_1, a4a5a8_1a7_1a6_1, asarag, Aea7agas
1laiso a1a2_1, alallaglagl, a20304,A203040506,
a21a5a6, aglaglmams_l, aﬁ_lams_l, aga;lagag
1laise | aray ', araaaz 'a; ', azaza; ', azaza; Tag tay ",
a4a50a6, 4405060708 ,aglamg ,a80;  Aeasg
1laisa alagl, a1a4agla;1, agagazl, a2a3040506,
a4a506, aglaglazlamgl, aglamgl, aga;laeag
11laszos alagl, a1a4ag1a;1, agagazl, azagaglagla;l,
a40506, a4a5a6a6asa;1a6, aglcwagl, aglcw
11as06 a1a2_1, a1a4a§1a;1, a2a3a4_1, a2a3a6ag1azl,
a4a5a6_1, a4a5a6a7a8_1, a6a7a§1, aga;laﬁ_lag
11lasoe a1a2_17 alaglaglagl, a20a30a4, a2a3a4a5a6_1,
a21a5a517 a@ag1(z4a6a8a7_1a6_17 a6a7a8_17 agar
11lasos am;l, a1a4a§1a§1, agagazl, a2a3a4a5ag1,
a4a5a51, aaaglaz aﬁaga;lagl, a6a7ag1, agar
1laser alagl, a1a4a§1a;1, agagazl, agagasaglall, a4a5a6717
a4a5a8a, agl, a6a7a§1, a6a7a10a§1ag1, agagafol, agag
12a477 alagl, agafla2a2a3a21, agagagl, a4a§1a51a4a4a5a51, a4a5ag1, aeaglaglas
12a497 alagl, a1a2a30a4,a2a304, aZlaglaz_lawﬁ_l,
a21a5a6_1, a6a5_1a4a6a8_1a;1a6_ ,a6a7as, A6A7A8A8
12a498 a1a2_17 azal_lagtma;la;l, agagall, a2a3a40506,
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-1 -1 _ -1 -1 —1 -1 —1
40506, ag Ay Gy GeA8GA7 G6,Ag A70g ,Ag Q7

937

12a499 a1_c12_1, cillaga_glcu, a2a3a4, a;laglagiaﬁciga_glla%
ay a5a6 , 0y AsGe0a7as, AeA7A8, as a7 a6 as
12as500 a1a2_1, agczl_lczzcm(z??la;l7 agag,azl7 agagaglaglall,
asasae, a4a5a6a7a8_1, a6_1a7a8_17 aga;laeag
12a501 alagl, alaglaglagl, a2a30a4, a2a3a4a5agl,
a;lasag , 605 a4a6a§1a;1ag1, asa7as, AeA7asas
12as506 alagl, agaf1a2a4a§1a;1, agagagl, a2a3a4050a6,
a41a506, aglaglazlawg , Qg a7a§1, asa;lagas
12a512 am;l, azafla2a2a3a4, a2a3a4, a;laglaglag,aﬁ,
a;lasag, aglag1a4a6a8a;1a6, aglamgl, aglcw
12as517 a1a2_1, agafla2a4a§1a;1, agagazl, agagaglaglall,
—1 —1 -1 -1
a4a50a6, a4a5a6a6a8a7 ae, a6 a7a8 ,a6 ar
12as521 alagl, agaf1a2a2a3a4, a2a3a4, aZlaglaz_l%ag,
a;lasae7 aglag1a4a7a§1, aﬁ_laﬂzgl7 aga;lagag
12a528 | aia; ', ai1az2asza; ', azasza; ,asaz ay asasas ay’,
a4a5agl, asasaearas, Aearas, as_la;lag as
12as535 a1a;1, alaglaglagl, az0a3a4, aza3a4a406agla4,
a;ytasag ', a;tasasaras, asaras, ag tar tag tas
12as536 am;l, a1a4a§1a;1, agagail, a2a3a4a5agl,
a4a50g , 0605 Ay A6Ag a;lag ,A6a708, A6A7TAIAS
12a541 | a1a; ', a1a; Ta; ta; ", azazaq, a2azasaiasas aa,
a;lasagl, a;lag,agla;lagl, asa7as, AeA7a8a8
12as579 alaz_l, alazlaglagl, aza3a4, agagcmag,agl7
a;1a5a6_1, as0y5  A40606a4708, AsATAS, agla;laglag
12a5s3 a1a2_1, alazlaglagl, 20304, 203040506,
a;lasae7 g Qs a4a6a§1a7_1a6, agla7ag, agla7agag
12as584 alagl, a1a4a§1a;1, agagagl, a203040506,
a4a50a6, Qg aglag asag a;lag,aglmag,aglmagag
12ag49 alagl, a1a4a§1a;1, azagail, a2a3a4a5a51,
a4a5agl, agaglaglaﬁagayag, asaras, agla;laglag
12a¢51 | a1a; ' arasa; ‘a; ', azaza; , azazag ‘as ay ',
a4a506, a4a5a6a6ag1a;1a6, aglamg, aglamgag
12a716 alagl, a1a4a3_1a2_1, agagall, agagaeag1a217 a4a5a6_1,
a4a5a8a7_1a6_1, a6a7ag1, aca7aga9aig, agaoaio, al_olaglas_lalo
12a722 a1a2_1, a1a4a3_1a2_17 azagall, azagaﬁaglall7 a4ag,agl7
a4a5aga7_1ag1, a6a7a8_1, a6a7a1_01a9_1ag_1, agagaio, agagadiodio
12a1039 | a1a; ', a1a; a3 a; ', azaza4, azazasasag a; as,
a;lasaﬁ, a, asa6aras, ag1a7ag, agla;laeag
12a1128 | a1a; ', a1a4a; 'a; ', azaszay , azazasas ‘ay ', asasag
a405060708, AcA70S, agla;laglagalo, aglagam, afolaglasalo
12a1134 alagl, a1a4a§1a;1, a2a3a21, a2a3a6ag1a21, a4a5ag1,
a4a5agla; ag ,a6a7as, A6A7A8A9A10, 0g  A9A10, afolaglasalo
12a1273 a1a2_1, a1a4a§1a2_1, agagall, agagaglaglazl, a4a50a6,

—1 -1 _ -1 —1 -1 -1
aqasaearasg, arasg, a a asa9aio, a. agaio, al a, asgailo
6 8 7 8 09
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