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NEW FAMILIES OF HYPERBOLIC TWISTED TORUS

KNOTS WITH GENERALIZED TORSION

Keisuke Himeno and Masakazu Teragaito

Abstract. A generalized torsion element is an obstruction for a group to

admit a bi-ordering. Only a few classes of hyperbolic knots are known to
admit such an element in their knot groups. Among twisted torus knots,

the known ones have their extra twists on two adjacent strands of torus
knots. In this paper, we give several new families of hyperbolic twisted

torus knots whose knot groups have generalized torsion. They have extra

twists on arbitrarily large numbers of adjacent strands of torus knots.

1. Introduction

It is well known that any knot group is torsion free, but it may contain a
generalized torsion element. In a group G, a generalized torsion element is a
nontrivial element g which yields the identity as a nonempty finite product of
its conjugates. That is, the equation

ga1ga2 · · · gan = 1

holds for some a1, a2, . . . , an ∈ G, where gai denotes the conjugate a−1
i gai. The

existence of a generalized torsion element is an obstruction for G to admit a
bi-ordering, which is a strict total ordering invariant under the left and right
multiplications.

Among knot groups, those of torus knots are well known to admit generalized
torsion (see [17]). Also, it is easy to give satellite knots whose knot groups have
generalized torsion. However, the case of hyperbolic knot groups is hard. It is
Naylor and Rolfsen [17] who give the first example of hyperbolic knot, which
is the (−2)-twist knot (52 in the knot table), that enjoys the property. This
hyperbolic knot is extended to all negative twist knots in [24]. Since then, only
few classes of hyperbolic knots are verified to have generalized torsion in their
knot groups [16]. In particular, we treated two families of twisted torus knots,
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T (pm + p + 1, pm + 1; 2, 1) with p ≥ 2,m ≥ 1, and T (5, 3; 2, s) with s ≥ 1 in
[16]. These realized a hyperbolic knot with arbitrarily high genus whose knot
group admits a generalized torsion element.

A twisted torus knot T (p, q; r, s) is obtained from a torus knot T (p, q) by
adding s-full (right handed) twists on r adjacent strings. We may assume that
p > q > 1, since T (p, q; r, s) and T (q, p; r, s) are equivalent [11]. Although it is
possible to take 2 ≤ r ≤ p+ q and s < 0, in general, we consider only the case
where r < q and s ≥ 1. See [6, 12,13] for basic facts of twisted torus knots.

The purpose of this paper is to give several new families of hyperbolic twisted
torus knots having generalized torsion in their knot groups. In particular, we
can choose the third parameter r to be arbitrarily large.

Theorem 1.1. For any integer r ≥ 3, each twisted torus knot of the following
families is hyperbolic, and its knot group admits a generalized torsion element.

(1) T (r + 2, r + 1; r, s) for s ≥ 2,
(2) T (m(r + 1) + 1, r + 1; r, 2) for m ≥ 2,
(3) T (2r + 1, r + 1; r, s) for s ≥ 1,
(4) T (m(r + 1)− 1, r + 1; r, 1) for m ≥ 3.

Corollary 1.2. For any integer b ≥ 4, there exist infinitely many hyperbolic
twisted torus knots, each of whose knot group admits a generalized torsion ele-
ment and bridge number is equal to b.

Proof. Set r = b− 1 for (1) in Theorem 1.1. If s > 18(r + 1), then the bridge
number of T (r + 2, r + 1; r, s) is equal to r + 1 = b by [3].

Also, T (r+ 2, r+ 1; r, s) is expressed as the closure of a positive braid, so it
is fibered [23]. In particular, its genus is (r2 + r + s(r2 − r))/2. (See the next
paragraph after Lemma 3.3.) By varying s, we can give distinct knots. �

For b = 2 and 3, we have given such hyperbolic knots in [16, 24]. Also, the
examples given in [16] are expected to realize arbitrarily high bridge number,
but we could not evaluate it.

In Theorem 1.1, we treat only the case where the first parameter of a twisted
torus knot is congruent to ±1 modulo the second parameter. We can give more
families beyond such a constraint as follows.

Theorem 1.3. Each twisted torus knot of the following families is hyperbolic,
and its knot group admits a generalized torsion element.

(1) T (5m+ 2, 5; 3, 1) for m ≥ 1,
(2) T (5m− 2, 5; 3, 1) for m ≥ 2,
(3) T (5m+ 2, 5; 4, 1) for m ≥ 1,
(4) T (5m− 2, 5; 4, 1) for m ≥ 2.

In general, knot types of twisted torus knots are most determined. Roughly
speaking, T (p, q; r, s) is hyperbolic if s ≥ 2 by Lee [13]. However, the case
where s = 1 remains to be open. Recently, Paiva [19, Corollary 1.4] shows that
T (kq + n, q; r, 1) is hyperbolic for k ≥ 2 and q > n ≥ r with gcd(n, q) = 1.
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However, these results do not cover all of our cases, so we need a proof of
hyperbolicity.

As mentioned before, any bi-orderable group does not admit generalized
torsion.

Corollary 1.4. For each twisted torus knot listed in Theorems 1.1, 1.3, its
knot group is not bi-orderable.

Many of our knots are L-space knots, so their knot groups are known to
be non-bi-orderable [5]. However, the lack of bi-ordering does not imply the
existence of generalized torsion.

In Section 2, we give an algorithmic way to get a presentation for the knot
group of a twisted torus knot. Section 3 shows the existence of generalized
torsion elements in their knot groups of our twisted torus knots. Finally, we
confirm that all of our twisted torus knots are hyperbolic in Sections 4 and 5
by applying some results on Dehn surgery.

2. Knot groups

We prepare an algorithmic way to calculate knot groups of twisted torus
knots as similar to [16].

Let Σ be the standard genus two closed orientable surface in the 3-sphere
S3. This gives a genus two Heegaard splitting U ∪Σ V of S3, where U and V
are genus two handlebodies. Let us take simple closed curves K0, C1, C2, C3, C4

and C5 on Σ as shown in Figure 1. Moreover, take simple closed curves a, b, c, d
on Σ as shown in Figure 2, so that {a, b} generates π1(U) and {c, d} generates
π1(V ), where U is the inside of Σ and V is the outside. (We use the same
symbol for the homotopy class of a loop.) Finally, we need three loops G0, R0

and Y0 as in Figure 3, where Σ−K0 contracts to the bouquet G0 ∨R0 ∨ Y0.

Figure 1. The knot K0 and 5 curves C1, C2, . . . , C5 for Dehn
twists on the standard genus two surface Σ in S3.

We consider the (right handed) Dehn twists Di about Ci for 1 ≤ i ≤ 5. (The
curve C5 and the Dehn twist D5 will be used in Sections 4 and 5.)
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Figure 2. Generators a, b, c, d for π1(U) and π1(V ).

Figure 3. Spine G0 ∨R0 ∨ Y0 of Σ−K0.

Table 1. Compositions of Dehn twists and the images of K0.

Composition K0 7→

ρ1 Ds
4 ◦Dm

1 ◦D−1
3 ◦D−(r−1)

2 ◦D1 T (m(r + 1) + 1, r + 1; r, s)

ρ2 Ds
4 ◦Dm

1 ◦D3 ◦Dr−1
2 ◦D−1

1 T (m(r + 1)− 1, r + 1; r, s)

ρ3 Ds
4 ◦Dm

1 ◦D−1
3 ◦D−1

2 ◦D2
1 T (5m+ 2, 5; 3, s)

ρ4 Ds
4 ◦Dm

1 ◦D3 ◦D2 ◦D−2
1 T (5m− 2, 5; 3, s)

ρ5 Ds
4 ◦Dm

1 ◦D−2
2 ◦D1 ◦D−1

3 ◦D2 ◦D1 T (5m+ 2, 5; 4, s)

ρ6 Ds
4 ◦Dm

1 ◦D2
2 ◦D−1

1 ◦D3 ◦D2 ◦D1 T (5m− 2, 5; 4, s)

Lemma 2.1. The compositions of Dehn twists given in Table 1 map the knot
K0 to the indicated twisted torus knot.

Proof. This is straightforward to verify. �

To chase the images of G0, R0 and Y0 under these compositions, it is enough
to examine the effects on the generators a, b, c, d under each Dehn twist Di for
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Table 2. The effects of Di on the generators.

a b c d

D±1
1 a bd±1 c d

D±1
2 a b c(ab)∓1 d(ab)∓1

D±1
3 a b c b∓1d

Ds
4 csa b c d

1 ≤ i ≤ 4. Table 2 summarizes them. For example, Dm
1 maps b to bdm for any

integer m, and D2
2 maps c and d to c(ab)−2 and d(ab)−2, respectively.

First, let us examine ρ1 = Ds
4 ◦ Dm

1 ◦ D−1
3 ◦ D−(r−1)

2 ◦ D1 in Table 1. Let
G,R and Y be the images of G0, R0 and Y0 under ρ1.
• For G0, we have the transition

G0 = a 7→ a 7→ a 7→ a 7→ a 7→ csa.

Thus G = csa on Σ. Hence, by putting c = d = 1 for π1(U) or a = b = 1 for
π1(V ), we obtain

G =

{
a in π1(U),

cs in π1(V ).

• For R0,

R0 = b 7→ bd 7→ bd(ab)r−1 7→ b2d(ab)r−1

7→ (bdm)2d(abdm)r−1 7→ (bdm)2d(csabdm)r−1.

Hence,

R =

{
b2(ab)r−1 in π1(U),

d2m+1(csdm)r−1 in π1(V ).

• For Y0,

Y0 = cd−1 7→ cd−1 7→ cd−1 7→ cd−1b−1 7→ cd−m−1b−1 7→ cd−m−1b−1.

Hence,

Y =

{
b−1 in π1(U),

cd−m−1 in π1(V ).

For the remaining compositions, we only exhibit the results in Tables 3, 4
and 5.

Lemma 2.2. Let r ≥ 1, m, s ≥ 0. The knot groups of twisted torus knots
T (m(r + 1) ± 1, r + 1; r, s), T (5m ± 2, 5; 3, s), T (5m ± 2, 5; 4, s) have the pre-
sentations as shown in Table 6.
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Table 3. The images G,R, Y under the compositions ρ1, ρ2.

ρ1 ρ2

π1(U) π1(V ) π1(U) π1(V )

G a cs a cs

R b2(ab)r−1 d2m+1(csdm)r−1 b(ab)r−1b dm(csdm)r−1dm−1

Y b−1 cd−m−1 b cdm−1

Table 4. The images G,R, Y under the compositions ρ3, ρ4.

ρ3 ρ4

π1(U) π1(V ) π1(U) π1(V )

G a cs a cs

R b(bab)2 dm(dm+1csdm)2 b(ab2)2 dm(csd2m−1)2

Y b−1 cd−m−1 b cdm−1

Table 5. The images G,R, Y under the compositions ρ5, ρ6.

ρ5 ρ6

π1(U) π1(V ) π1(U) π1(V )

G a cs a cs

R b(ab)2bab dm+1(csdm)2dm+1csdm (ab)−5 d(csdm)−2d(csdm)−3

Y (babab)−1 cd−1(csdm)−2d−m−1 b(ab)2 cdm−1(csdm)2d−1

Proof. We apply the van Kampen theorem to calculate the knot group.

Let ρ1 = Ds
4 ◦Dm

1 ◦D−1
3 ◦D

−(r−1)
2 ◦D1 as in Table 1. Then K = ρ1(K0) is

T (m(r + 1) + 1, r + 1; r, s). The knot complement is the union of U −K and
V −K along Σ−K. Note that π1(U −K) ∼= π1(U), π1(V −K) ∼= π1(V ) and
π1(Σ−K) is generated by {G,R, Y }.

By Table 3, we have a presentation of the knot group as

〈a, b, c, d | a = cs, b2(ab)r−1 = d2m+1(csdm)r−1, b−1 = cd−m−1〉.

If we eliminate a and b by using the first and last relations, then we have

〈c, d | (dm+1c−1)2(csdm+1c−1)r−1 = d2m+1(csdm)r−1〉
= 〈c, d | c−1dm+1(cs−1dm+1)r−1c−1 = dm(csdm)r−1〉
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Table 6. The presentations of knot groups.

T (m(r + 1) + 1, r + 1; r, s)

〈c, d | dm+1(cs−1dm+1)r−1 = cdm(csdm)r−1c〉

T (m(r + 1)− 1, r + 1; r, s)

〈c, d | dm−1(cs+1dm−1)r−1 = c−1dm(csdm)r−1c−1〉

Knot T (5m+ 2, 5; 3, s)

and 〈c, d | c−1dm+1cs−1dm+1c−1dm+1cs−1dm+1c−1 = dmcsd2m+1csdm〉

Presentation T (5m− 2, 5; 3, s)

of 〈c, d | cdm−1cs+1dm−1cdm−1cs+1dm−1c = dmcsd2m−1csdm〉

knot T (5m+ 2, 5; 4, s)

group 〈c, d | (dm+1csdmcsdm+1(cdmcsdmc)−1)2 = cdmcsdmcs〉

T (5m− 2, 5; 4, s)

〈c, d | (dm−1csdmcsdm−1(c−1dmcsdmc−1)−1)2 = c−1dmcsdmcs〉

= 〈c, d | dm+1(cs−1dm+1)r−1 = cdm(csdm)r−1c〉.

For other compositions ρi (2 ≤ i ≤ 4), the process is very similar, so we
omit it.

For ρ5, we have a presentation

〈a, b, c, d | a = cs, b(ab)2bab = dm+1(csdm)2dm+1csdm,

(babab)−1 = cd−1(csdm)−2d−m−1〉

from Table 5. Eliminate the generator a by using the first relation. Then the
second and third relations change to

bcsbcsb · bcsb = dm+1(csdm)2dm+1csdm,(2.1)

bcsbcsb = dm+1(csdm)2dc−1,(2.2)

respectively. By (2.2), (2.1) changes to

(2.3) bcsb = cdmcsdm.

Furthermore by (2.3), (2.2) changes to

(2.4) cdmcsdm · csb = dm+1(csdm)2dc−1.

By (2.4), we have

b = c−s · (cdmcsdm)−1 · dm+1(csdm)2dc−1(2.5)

= c−s+1(cdmcsdmc)−1 · dm+1(csdm)2dc−1

= c−s+1(cdmcsdmc)−1 · dm+1csdmcsdm+1c−1.
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Thus we can eliminate the generator b by (2.5), and (2.3) changes to

c−s+1(cdmcsdmc)−1 · dm+1csdmcsdm+1c−1 · cs·
c−s+1(cdmcsdmc)−1 · dm+1csdmcsdm+1c−1 = cdmcsdm.

Then

dm+1csdmcsdm+1(cdmcsdmc)−1 · dm+1csdmcsdm+1c−1(cdmcsdm)−1

= (cdmcsdmc)cs−1.

Hence we have the presentation

〈c, d | (dm+1csdmcsdm+1(cdmcsdmc)−1)2 = cdmcsdmcs〉.

For ρ6, the process is similar. �

3. Generalized torsion elements

The commutator of x and y is [x, y] = x−1y−1xy, and recall gz = z−1gz.

Lemma 3.1. In a group G, [x, yz] = [x, z][x, y]z. Moreover, if w consists of
x±1 and y, then [x,w] is decomposed as a product of conjugates of [x, y].

Proof. The first claim follows from a direct calculation. The second follows
from the first one and [x, x±1] = 1. �

Our argument uses the next lemma repeatedly.

Lemma 3.2. Let G be a group generated by two elements x and y, and let w
consist of x±1 and y. Suppose that G is not abelian. If [x,w] = 1, then the
commutator [x, y] is a generalized torsion element in G.

Proof. By Lemma 3.1, [x,w] is decomposed as a product of conjugates of [x, y].
If [x, y] = 1, then G would be abelian. Hence [x, y] 6= 1, so it is a generalized
torsion element. �

Lemma 3.3. Each twisted torus knot listed in Theorems 1.1, 1.3 is a nontrivial
fibered knot. Therefore, its knot group is not abelian.

Proof. Each twisted torus knot is expressed as a closure of a positive braid, so
it is fibered [23]. Its genus is calculated as below. �

If a knot K has a form of the closure of a positive braid, then its genus g(K)
is given as

g(K) =
1− b+ c

2
,

where b is the number of strands and c is the number of crossings. We record
the genera for some classes for later use in Table 7.

Proposition 3.4. Each twisted torus knot listed in Theorems 1.1, 1.3 admits
a generalized torsion element in its knot group.
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Table 7. Genera for some families.

Knot Genus

T (5m+ 2, 5; 3, 1) 10m+ 5

T (5m+ 2, 5; 4, 1) 10m+ 8

T (5m− 2, 5; 4, 1) 10m

Proof. For each knot, the knot group is not abelian by Lemma 3.3. To apply
Lemma 3.2, it is necessary to find a presentation with two generators for the
knot group and a word w which satisfies the condition of Lemma 3.2.

Let G1 be the knot group of T (r + 2, r + 1; r, s) given in Lemma 2.2 (set
m = 1 for Table 6). The presentation is changed to

G1 = 〈c, d | d2(cs−1d2)r−1 = cd(csd)r−1c〉
= 〈c, d, g | d2(cs−1d2)r−1 = cd(csd)r−1c, g = csd〉
= 〈c, g | (c−sg)2(cs−1(c−sg)2)r−1 = c1−sg · gr−1c〉
= 〈c, g | (c−sg)2(c−1gc−sg)r−1 = c1−sgrc〉
= 〈c, g | (c−1gc−sg)rc−1 = gr〉.

Let w(g, c−1) be the left hand side of the last relation. Thus G1 has the
presentation 〈c, g | w(g, c−1) = gr〉, so [g, w(g, c−1)] = 1. Since each power of
the generator c is negative in the word w(g, c−1), [g, c−1] gives a generalized
torsion element in G1 by Lemma 3.2.

For the remaining cases, the process is the same. So, we only exhibit the
transition of the presentation. The word w is set to be the left or right side of
the last relation.

Let G2 be the knot group of T (m(r + 1) + 1, r + 1; r, 2). Then,

G2 = 〈c, d | dm+1(cdm+1)r−1 = cdm(c2dm)r−1c〉
= 〈c, d, g | dm+1(cdm+1)r−1 = cdm(c2dm)r−1c, g = cdm+1〉
= 〈d, g | dm+1gr−1 = gd−1((gd−m−1)2dm)r−1gd−m−1〉
= 〈d, g | gr−1 = d−m−1gd−1(gd−m−1gd−1)r−1gd−m−1〉.

Let G3 and G4 be the knot groups of T (2r+ 1, r+ 1; r, s) and T (m(r+ 1)−
1, r + 1; r, 1), respectively. Then,

G3 = 〈c, d | d(cs+1d)r−1 = c−1d2(csd2)r−1c−1〉
= 〈c, d, g | d(cs+1d)r−1 = c−1d2(csd2)r−1c−1, g = cs+1d〉
= 〈c, g | c−s−1g · gr−1 = c−1(c−s−1g)2(cs(c−s−1g)2)r−1c−1〉
= 〈c, g | gr = (c−1gc−s−1g)rc−1〉,
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and

G4 = 〈c, d | dm−1(c2dm−1)r−1 = c−1dm(cdm)r−1c−1〉
= 〈c, d, g | dm−1(c2dm−1)r−1 = c−1dm(cdm)r−1c−1, g = cdm〉
= 〈d, g | dm−1((gd−m)2dm−1)r−1 = dmg−1dmgr−1dmg−1〉
= 〈d, g | d−mgd−1(gd−mgd−1)r−1gd−m = gr−1〉
= 〈d, g | (gd−mgd−1)rgd−m = gr〉.

Let G5 and G6 be the knot groups of T (5m+2, 5; 3, 1) and T (5m−2, 5; 3, 1),
respectively. We have

G5 = 〈c, d | c−1d2m+2c−1d2m+2c−1 = dmcd2m+1cdm〉
= 〈c, d | (c−1d2m+2)3 = dmcd2m+1cd3m+2〉
= 〈c, d, g | (c−1d2m+2)3 = dmcd2m+1cd3m+2, g = c−1d2m+2〉
= 〈d, g | g3 = d3m+2g−1d4m+3g−1d3m+2〉,

and

G6 = 〈c, d | cdm−1c2dm−1cdm−1c2dm−1c = dmcd2m−1cdm〉
= 〈c, d | cdm−1c2dm−1cdm−1c2dm−1c = d(dm−1cdm)2〉
= 〈c, d, g | cdm−1c2dm−1cdm−1c2dm−1c = d(dm−1cdm)2, g = dm−1cdm〉
= 〈d, g | d1−mgd−mgd−2m+1gd−mgd−mgd−2m+1gd−mgd−m = dg2〉
= 〈d, g | d−mgd−mgd−2m+1gd−mgd−mgd−2m+1gd−mgd−m = g2〉.

Finally, let G7 and G8 be the knot groups of T (5m+ 2, 5; 4, 1) and T (5m−
2, 5; 4, 1), respectively. Then

G7 = 〈c, d | (dm+1cdmcdm+1(cdmcdmc)−1)2 = cdmcdmc〉
= 〈c, d | (dm+1cdmcdm+1(cdmcdmc)−1)2dm = (cdm)3〉
= 〈c, d, g | (dm+1cdmcdm+1(cdmcdmc)−1)2dm = (cdm)3, g = cdm〉
= 〈d, g | (dm+1g2dm+1g−3)2dm = g3〉,

and

G8 = 〈c, d | (dm−1cdmcdm−1(c−1dmcdmc−1)−1)2 = c−1dmcdmc〉
= 〈c, d | c(dm−1cdmcdm−1(c−1dmcdmc−1)−1)2 = dmcdmc〉
= 〈c, d, g | c(dm−1cdmcdm−1(c−1dmcdmc−1)−1)2 = (dmc)2, g = dmc〉
= 〈d, g | d−mg(d−1g2d−1gd−mg−1d−mg)2 = g2〉.

�



TWISTED TORUS KNOTS WITH GENERALIZED TORSION 213

4. Hyperbolicity and proof of Theorem 1.1

In this section, we discuss the geometric types of our twisted torus knots,
and complete the proof of Theorem 1.1. In general, most of twisted torus knots
T (p, q; r, s) are hyperbolic if |s| ≥ 2 by Lee [12]. The problem happens when
|s| = 1. We extract a few facts in a restricted form from Lee’s and Paiva’s
works for our purpose.

Lemma 4.1 ([13]). Let p > q > r ≥ 3 and s ≥ 1. Then T (p, q; r, s) is a torus
knot if and only if (p, q; r, s) = (m(r+1)+1, r+1; r, 1) for some integer m ≥ 1.

Lemma 4.2 ([12]). Let p > q > r ≥ 3 and s ≥ 2. Then T (p, q; r, s) is
hyperbolic.

Lemma 4.3 ([19]). T (kq + n, q; r, 1) is hyperbolic for k ≥ 2 and q > n ≥ r
with gcd(n, q) = 1.

Proposition 4.4. Each twisted torus knot listed in Theorem 1.1 is hyperbolic.

Proof. This follows from Lemmas 4.5, 4.10 and 4.11 below. �

We divide the argument into subsections. Recall that r ≥ 3.

4.1. Families (1) and (2) of Theorem 1.1

Lemma 4.5. T (r+ 2, r+ 1; r, s) and T (m(r+ 1) + 1, r+ 1; r, 2) are hyperbolic
for s ≥ 2, m ≥ 2.

Proof. This immediately follows from Lemma 4.2. �

4.2. Families (3) and (4) of Theorem 1.1

We recall the notion of doubly primitive construction [1] and primitive/
Seifert-fibered construction [6].

Let H be a standardly embedded genus two handlebody in S3. A knot K
lying on ∂H is said to be primitive with respect to H if it represents one of
two generators of π1(H). Then a 2-handle addition to H along K yields a solid
torus. This is also equivalent to the fact that the quotient group of π1(H) by
the normal closure of the element represented by K is isomorphic to the infinite
cyclic group. In addition, if K is primitive with respect to H ′, which is the
outside of H in S3, then K is said to be doubly primitive. We should remark
here that if K is primitive with respect to H, then K has tunnel number one
[8].

Also, K is said to be (m,n) Seifert-fibered with respect to H if the quotient
group of π1(H) by the normal closure of the element represented by K is
isomorphic to a group with presentation 〈a, b | am = bn〉 for some integers
m,n ≥ 2. Then a 2-handle addition to H along K yields a Seifert fibered
manifold over the disk with two exceptional fibers of indices m and n. If K
is primitive with respect to one side and (m,n) Seifert-fibered with respect to
the other side, then K is said to be primitive/Seifert-fibered.
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For K on ∂H, the surface slope is the slope determined by one of the loops
∂N(K) ∩ ∂H. The surface slope surgery on K is decomposed as the union of
two 2-handle additions H ∪ (2-handle) and H ′ ∪ (2-handle) along K. Hence, if
K is doubly primitive (resp. primitive/Seifert-fibered), then the surface slope
surgery on K yields a lens space (resp. a Seifert fibered manifold over the
2-sphere with three exceptional fibers or a connected sum of two lens spaces).

For the family (3) of Theorem 1.1, we use the composition ρ2 (set m = 2
and s = 1) in Table 1 of Section 2.

Lemma 4.6. On Σ, ρ2(K0) with m = 2, s = 1 is doubly primitive. Its surface
slope is 3r2 + 3r + 1.

Proof. By tracing ρ2(K0) on Σ, we can read off that the curve represents
(ab)rb ∈ π1(U) and (cd2)rd ∈ π1(V ). Consider the quotient of π1(U) by the
normal closure of this element (ab)rb. We have

〈a, b | (ab)rb = 1〉 = 〈a, b | (ab)r = b−1〉
= 〈a, b, e | (ab)r = b−1, e = ab〉
= 〈a, b, e | er = b−1, e = ab〉
= 〈a, e | e = ae−r〉
= 〈e〉.

This shows that ρ2(K0) is primitive with respect to U .
Similarly, consider the quotient of π1(V ) by the above element (cd2)rd.

Then,

〈c, d | (cd2)rd = 1〉 = 〈c, d | (cd2)r = d−1〉
= 〈c, d, f | (cd2)r = d−1, f = cd2〉
= 〈c, d, f | fr = d−1, f = cd2〉
= 〈c, f | f = cf−2r〉
= 〈c, f | f2r+1 = c〉
= 〈f〉.

Hence ρ2(K0) is also primitive with respect to V .
It is straightforward to count the surface slope on Σ. The (2r+1, r+1)-torus

knot part contributes (2r+1)(r+1) to the surface slope, and an extra full twist
on r adjacent strands contributes r2 to it. These give 3r2 + 3r + 1. �

Let ρ′2 = D−1
5 ◦ ρ2, where D5 is the Dehn twist along the curve C5 defined

in Section 2. The point is that this extra Dehn twist does not change the knot
type, but the position on Σ, and hence, the surface slope changes.

Lemma 4.7. Suppose m = 2 and s = 1. On Σ, ρ′2(K0) is primitive with
respect to U , but (r− 1, 2) Seifert-fibered with respect to V . Its surface slope is
3r2 + 3r.
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Proof. The argument is similar to the proof of Lemma 4.6. We read off ρ′2(K0)
on Σ. It represents (ab)rb ∈ π1(U) as the same as ρ2(K0), but (cd2)r−1cdcd ∈
π1(V ). Hence, this is primitive with respect to U as before. Also,

〈c, d | (cd2)r−1cdcd = 1〉 = 〈c, d, f | (cd2)r−1(cd)2 = 1, f = cd2〉
= 〈d, f | fr−1(fd−1)2 = 1〉
= 〈d, f, g | fr−1(fd−1)2 = 1, g = fd−1〉
= 〈f, g | fr−1g2 = 1〉.

This shows that ρ′2(K0) is (r − 1, 2) Seifert-fibered with respect to V .
As an effect of D−1

5 , the surface slope decreases by one from that of ρ2(K0).
�

Lemma 4.8. Suppose m = 2 and s = 1. The surface slope surgery on ρ′2(K0)
yields a Seifert fibered manifold over the 2-sphere with three exceptional fibers
of indices (r − 1, 2, r + 2).

Proof. The only information that we need is the index of the third exceptional
fiber after the surface slope surgery. We follow the procedure of [6, 4.2 and 4.3].
Take a non-separating curve ` on Σ disjoint from ρ′2(K0) so that ` represents
g2 (= (cd)2) ∈ π1(V ) as shown in Figure 4.

Figure 4. The loop ` disjoint from ρ′2(K0) (r = 3) on Σ.

This implies that ` becomes a regular fiber in the Seifert fibration of V ∪ h,
where h is a 2-handle attached to V along ρ′2(K0). (Recall that any regular
fiber in V ∪ h represents g2 as shown in the proof of Lemma 4.7.)

Also, ` = a2b ∈ π1(U). Let U ∪ h′ be the 2-handle addition to U along
ρ2(K0). Since π1(U ∪ h′) is generated by e (= ab), ` = er+2 ∈ π1(U ∪ h′).

Recall that the surface slope surgery on ρ′2(K0) is decomposed as the union
of V ∪ h and U ∪ h′. Here, V ∪ h is a Seifert fibered manifold over the disk
with two exceptional fibers of indices r − 1 and 2, and U ∪ h′ is a solid torus
by Lemma 4.7. As shown above, a regular fiber ` of V ∪ h runs r + 2 times
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along the core of the solid torus U ∪ h′. This means that the Seifert fibration
of V ∪ h extends to U ∪ h′ so that the core of U ∪ h′ becomes an exceptional
fiber of index r + 2. Hence the resulting manifold of the surgery slope surgery
is a Seifert fibered manifold over the 2-sphere with three exceptional fibers of
indices (r − 1, 2, r + 2). �

Remark 4.9. In Lemma 4.8, when r = 3, the resulting manifold is a prism
manifold, which also admits a Seifert fibration over the projective plane with
at most one exceptional fiber.

Lemma 4.10. T (2r + 1, r + 1; r, s) is hyperbolic for s ≥ 1.

Proof. If s ≥ 2, then this is hyperbolic by Lemma 4.2. Hence we show that
K = T (2r + 1, r + 1; r, 1) is hyperbolic. By Lemma 4.6, K is doubly primitive
on Σ. Then the surface slope surgery, which is (3r2 + 3r + 1)-surgery, yields a
lens space.

By Lemma 4.1, K is not a torus knot. So, assume that K is a satellite for
a contradiction. By [2, 25], the only satellite knot that admits a cyclic surgery
is a (2uv + ε, 2)-cable of a (u, v)-torus knot T (u, v), and the surgery slope is
4uv + ε, where ε = ±1.

On the other hand, Lemma 4.8 claims that (3r2 + 3r)-surgery on K yields a
Seifert fibered manifold over the 2-sphere with three exceptional fibers. Thus
an adjacent slope to the cyclic surgery slope on K yields such an irreducible
Seifert fibered manifold. This is impossible. For, if K is a (2uv + 1, 2)-cable
of T (u, v), then the only cyclic surgery slope is 4uv + 1 as mentioned. We
examine its adjacent slopes 4uv + 2 and 4uv. Then, (4uv + 2)-surgery yields
a reducible manifold with lens space summand L(2, 1), and 4uv-surgery yields
a graph manifold which is the union of two Seifert fibered manifolds over the
disk with two exceptional fibers [7]. (The resulting manifold of 4uv-surgery
also admits a Seifert fibration over the projective plane with two exceptional
fibers of indices u and v [14, Example 8.2].) The argument is similar for a
(2uv − 1, 2)-cable of T (u, v). �

Lemma 4.11. T (m(r + 1)− 1, r + 1; r, 1) is hyperbolic for m ≥ 3.

Proof. Since T (m(r+ 1)− 1, r+ 1; r, 1) = T ((m− 1)(r+ 1) + r, r+ 1; r, 1), the
conclusion immediately follows from Lemma 4.3. �

Proof of Theorem 1.1. This follows from Propositions 3.4 and 4.4. �

5. Proof of Theorem 1.3

Proposition 5.1. Each twisted torus knot listed in Theorem 1.3 is hyperbolic.

Proof. This follows from Lemmas 5.5, 5.6, 5.8 and 5.9 below. �

Remark 5.2. For the family (2) of Theorem 1.3, T (5m− 2, 5; 3, 1) = T (5(m−
1) + 3, 5; 3, 1), so Paiva’s result [19] (Lemma 4.3) guarantees the hyperbolicity
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if m ≥ 3. However, we also present its proof including the case m = 2, because
our argument is different from [19].

5.1. Families (1) and (2) of Theorem 1.3

For two families T (5m + 2, 5; 3, 1) (m ≥ 1) and T (5m − 2, 5; 3, 1) (m ≥ 2),
we use the compositions ρ3 and ρ4 (with s = 1) in Table 1 of Section 2.

Lemma 5.3. On Σ, we have the following.

(1) ρ3(K0) is primitive with respect to U , and (3,m+1) Seifert-fibered with
respect to V . Its surface slope is 25m+ 19.

(2) ρ4(K0) is doubly primitive if m = 2. If m > 2, then it is primitive
with respect to U , and (3,m − 1) Seifert-fibered with respect to V . Its
surface slope is 25m− 1.

Proof. The argument is the same as the proofs of Lemmas 4.6 and 4.7.
(1) ρ3(K0) represents abab2ab2 ∈ π1(U) and cdmcd2m+1cd2m+1 ∈ π1(V ).

Then,

〈a, b | abab2ab2 = 1〉 = 〈a, b | (ab2)3 = b〉
= 〈a, b, e | (ab2)3 = b, e = ab2〉
= 〈a, b, e | e3 = b, e = ab2〉
= 〈a, e | e = ae6〉
= 〈e〉,

〈c, d | cdmcd2m+1cd2m+1 = 1〉 = 〈c, d | (cd2m+1)3 = dm+1〉
= 〈c, d, f | (cd2m+1)3 = dm+1, f = cd2m+1〉
= 〈c, d, f | f3 = dm+1, f = cd2m+1〉
= 〈d, f | f3 = dm+1〉.

Hence ρ3(K0) is primitive with respect to U , and (3,m+1) Seifert-fibered with
respect to V .

(2) Consider ρ4(K0). It represents abab2ab2 ∈ π1(U) and cdmcd2m−1cd2m−1

∈ π1(V ). Thus it is primitive with respect to U as in (1), and (3,m − 1)
Seifert-fibered with respect to V when m ≥ 3 as follows:

〈c, d | cdmcd2m−1cd2m−1 = 1〉 = 〈c, d | (cd2m−1)3 = dm−1〉
= 〈c, d, f | (cd2m−1)3 = dm−1, f = cd2m−1〉
= 〈c, d, f | f3 = dm−1, f = cd2m−1〉
= 〈d, f | f3 = dm−1〉.

If m = 2, this is isomorphic to the infinite cyclic group 〈f〉, so ρ4(K0) is
primitive with respect to V .

For these knots, it is straightforward to calculate their surface slopes on
Σ. �
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Lemma 5.4. We have the following.

(1) The surface slope surgery on ρ3(K0) yields a Seifert fibered manifold
over the 2-sphere with three exceptional fibers of indices (2, 3,m+ 1).

(2) The surface slope surgery on ρ4(K0) yields a lens space if m = 2, or a
Seifert fibered manifold over the 2-sphere with three exceptional fibers
of indices (8, 3,m− 1) if m ≥ 3.

Proof. The process is the same as the proof of Lemma 4.8.
(1) We use the same notation there. Take a non-separating curve ` on Σ

disjoint from ρ3(K0) so that ` represents dm+1 ∈ π1(V ) as shown in Figure 5.
It represents a regular fiber in V ∪ h.

Figure 5. The loop ` disjoint from ρ3(K0) on Σ.

Here, ` = ab ∈ π1(U). Then, ` = e−2 ∈ π1(U ∪ h′). Hence the resulting
manifold of the surface slope surgery is a Seifert fibered manifold over the
2-sphere with three exceptional fibers of indices (2, 3,m+ 1).

(2) If m = 2, then ρ4(K0) is doubly primitive by Lemma 5.3(2), so the
surface slope surgery yields a lens space. For m ≥ 3, the argument is similar
again. Take a non-separating curve ` on Σ disjoint from ρ4(K0) as shown in
Figure 6. It represents dm−1 ∈ π1(V ), which becomes a regular fiber of V ∪ h.

Since ` = a−1b ∈ π1(U), ` = e8 ∈ π1(U ∪ h′). This shows that the core of
the solid torus U ∪ h′ becomes an exceptional fiber of index 8 after the surface
slope surgery. �

Lemma 5.5. T (5m+ 2, 5; 3, 1) is hyperbolic for m ≥ 1.

Proof. Let K = T (5m + 2, 5; 3, 1). This is not a torus knot by Lemma 4.1.
Assume that K is a satellite for a contradiction.

First, the primitivity (Lemma 5.3(1)) implies that K has tunnel number one
(see also [10]). In particular, K is prime [18], so the wrapping number in the
pattern is at least two. However, the bridge number of K is at most 5. Hence,
the companion is a 2-bridge knot, and the pattern has wrapping number two
by [21] (see also [22]).
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Figure 6. The loop ` disjoint from ρ4(K0) on Σ.

By Lemma 5.4(1), the surface slope surgery on ρ3(K0) yields a Seifert fibered
manifold over the 2-sphere with three exceptional fibers. Thus K is a (4n±1, 2)-
cable of T (2, n) by [15, Proposition 2.1].

For a knot of this class, the cabling slope is 8n±2, so 8n±1, 8n±3 surgeries
are the only integral surgeries that yield a Seifert fibered manifold over the 2-
sphere with three exceptional fibers by [7]. Also, in the resulting Seifert fibered
manifold, the two exceptional fibers of indices 2 and n are inherited from the
exterior of the companion torus knot T (2, n), and the third exceptional fiber
corresponds to the core of the solid torus which arose from the pattern solid
torus after the surgery. In fact, the index of the third exceptional fiber is given
by the distance between the cabling slope 2n of T (2, n) and (8n ± 1)/4 or
(8n± 3)/4 by [7]. Hence it must be 3.

By Lemma 5.4(1) again, the surface slope surgery on ρ3(K0) yields a Seifert
fibered manifold over the 2-sphere with three exceptional fibers of indices
(2, 3,m + 1). Since the Seifert fibration (over the 2-sphere) is unique for this
type of Seifert fibered manifolds (see [9]), the two sets of indices (2, 3,m + 1)
and (2, 3, n) coincide, implying n = m+ 1.

Finally, a (4n± 1, 2)-cable of T (2, n) has genus 3n− 1 or 3n− 2 by [20] (see
also [4]). On the other hand, K has genus 10m + 5 = 10(n − 1) + 5 by Table
7. Thus their genera do not coincide, a contradiction. �

Lemma 5.6. T (5m− 2, 5; 3, 1) is hyperbolic for m ≥ 2.

Proof. Let K = T (5m− 2, 5; 3, 1). This is not a torus knot by Lemma 4.1. We
assume that K is a satellite for a contradiction.

As in the proof of Lemma 5.5, K is a (4n± 1, 2)-cable of T (2, n).
If m = 2, then the surface slope surgery (for ρ4(K0)) yields a lens space by

Lemma 5.4(2). This surface slope is 49 by Lemma 5.3(2). By [2,25], the cyclic
surgery slope for K is 8n± 1. This is obviously impossible, because n is odd.

Suppose m ≥ 3. Again, the surface slope surgery yields a Seifert fibered
manifold over the 2-sphere with three exceptional fibers of indices (8, 3,m− 1)



220 K. HIMENO AND M. TERAGAITO

by Lemma 5.4(2). The rest of argument goes simpler than the proof of Lemma
5.5. Two sets of indices (8, 3,m−1) and (2, 3, n) coincide, implying m = 3 and
n = 8. However, this is impossible again, because n is odd. �

5.2. Families (3) and (4) of Theorem 1.3

For the compositions ρ5 and ρ6 with s = 1 in Table 1, ρ5(K0) = T (5m +
2, 5; 4, 1) and ρ6(K0) = T (5m− 2, 5; 4, 1).

We modify these compositions as ρ′5 = D−1
5 ◦ ρ5 and ρ′6 = D−1

5 ◦ ρ6.

Lemma 5.7. On Σ, we have the following.

(1) ρ′5(K0) is doubly primitive, and its surface slope is 25m+ 25.
(2) ρ′6(K0) is doubly primitive, and its surface slope is 25m+ 5.

Hence, the surface slope surgery yields a lens space for each knot.

Proof. The argument is similar to that of Lemma 4.6.
(1) We see that ρ′5(K0) represents ababab2ab ∈ π1(U) and

cdm+1cdmcdmcdmcdm ∈ π1(V ).

Then,

〈a, b | ababab2ab = 1〉 = 〈a, b | (ab2)4 = b−1〉
= 〈a, b, e | (ab2)4 = b−1, e = ab2〉
= 〈a, b, e | e4 = b−1, e = ab2〉
= 〈a, e | e = ae−8〉
= 〈e〉,

〈c, d | cdm+1cdmcdmcdmcdm = 1〉 = 〈c, d | (cdm)5 = d−1〉
= 〈c, d, f | (cdm)5 = d−1, f = cdm〉
= 〈c, d, f | f5 = d−1, f = cdm〉
= 〈d, f | f5 = d−1〉
= 〈f〉.

Thus ρ′5(K0) is doubly primitive.
(2) Similarly, ρ′6(K0) represents abab2abab ∈ π1(U) and

cdmcdm−1cdm−1cdmcdm−1 ∈ π1(V ).

It is primitive with respect to U as above, and

〈c, d | cdmcdm−1cdm−1cdmcdm−1 = 1〉
= 〈c, d, f | cdmcdm−1cdm−1cdmcdm−1 = 1, f = cdm−1〉
= 〈c, d, f | fdf3df = 1, f = cdm−1〉
= 〈d, f | f2df3d = 1〉
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= 〈d, f, g | f2df3d = 1, g = f2d〉
= 〈f, g | gfg = 1〉
= 〈g〉.

Thus ρ′6(K0) is doubly primitive.
For both knots, the surface slope is calculated easily. �

Lemma 5.8. T (5m+ 2, 5; 4, 1) is hyperbolic for m ≥ 1.

Proof. Let K = T (5m+2, 5; 4, 1). By Lemma 4.1, K is not a torus knot. Since
it is doubly primitive, K has tunnel number one, so prime. It suffices to show
that K is not a satellite.

If K is a satellite, then it is a (4n + ε, 2)-cable of a (2, n)-torus knot with
ε = ±1, because it admits a cyclic surgery by Lemma 5.7(1). In particular, the
cyclic surgery slope is 8n+ ε.

However, the surface slope for ρ′5(K0) is 25m + 25 by Lemma 5.7(1). Thus
8n + 1 = 25m + 25 implies (m,n) = (8k, 25k + 3), and 8n − 1 = 25m + 25
implies (8k − 2, 25k − 3) for k ≥ 1.

Recall that K has genus 10m + 8 (Table 7). Also, a (4n + 1, 2)-cable
(resp. (4n−1, 2)-cable) of a (2, n)-torus knot has genus 3n−1 (resp. 3n−2). If
(m,n) = (8k, 25k+ 3), then we have 80k+ 8 = 3(25k+ 3)− 1, a contradiction.
Otherwise, (m,n) = (8k − 2, 25k − 3) implies 10(8k − 2) + 8 = 3(25k − 3)− 2,
a contradiction again. �

Lemma 5.9. T (5m− 2, 5; 4, 1) is hyperbolic for m ≥ 2.

Proof. Let K = T (5m−2, 5; 4, 1). By Lemma 4.1, K is not a torus knot. Again,
K has tunnel number one, so it is prime. Assume that K is a satellite. Then
it is a (4n + ε, 2)-cable of a (2, n)-torus knot with ε = ±1, because it admits
a cyclic surgery by Lemma 5.7(2). In particular, the cyclic surgery slope is
8n+ ε.

The surface slope of ρ′6(K0) is 25m + 5 by Lemma 5.7(2). Then 8n + 1 =
25m + 5 implies (m,n) = (8k − 4, 25k − 12) and 8n − 1 = 25m + 5 implies
(8k − 6, 25k − 18) for k ≥ 1.

Recall that K has genus 10m (Table 7). As in the proof of Lemma 5.8, the
case where (m,n) = (8k−4, 25k−12) leads to a contradiction, because 10(8k−
4) = 3(25k − 12)− 1 does not hold. Finally, the case where (8k − 6, 25k − 18)
is impossible, because 10(8k − 6) = 3(25k − 18)− 2 does not hold. �

Proof of Theorem 1.3. This follows from Propositions 3.4 and 5.1. �

Acknowledgment. We would like to thank Kimihiko Motegi and Sangyop
Lee for their helpful communications. We also thank the referee for careful
reading.



222 K. HIMENO AND M. TERAGAITO

References

[1] J. Berge, Some knots with surgeries yielding lens spaces, preprint, arXiv:1802.09722.

[2] S. A. Bleiler and R. A. Litherland, Lens spaces and Dehn surgery, Proc. Amer. Math.

Soc. 107 (1989), no. 4, 1127–1131. https://doi.org/10.2307/2047677
[3] R. S. Bowman, S. Taylor, and A. Zupan, Bridge spectra of twisted torus knots, Int.

Math. Res. Not. IMRN 2015 (2015), no. 16, 7336–7356. https://doi.org/10.1093/

imrn/rnu162

[4] G. Burde, H. Zieschang, and M. Heusener, Knots, third, fully revised and extended

edition, De Gruyter Studies in Mathematics, 5, De Gruyter, Berlin, 2014.

[5] A. Clay and D. Rolfsen, Ordered groups, eigenvalues, knots, surgery and L-spaces, Math.
Proc. Cambridge Philos. Soc. 152 (2012), no. 1, 115–129. https://doi.org/10.1017/

S0305004111000557

[6] J. C. Dean, Small Seifert-fibered Dehn surgery on hyperbolic knots, Algebr. Geom. Topol.
3 (2003), 435–472. https://doi.org/10.2140/agt.2003.3.435

[7] C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983),
no. 2, 687–708. https://doi.org/10.2307/1999046

[8] C. McA. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology

Appl. 27 (1987), no. 3, 285–299. https://doi.org/10.1016/0166-8641(87)90093-9
[9] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in

Mathematics, 43, American Mathematical Society, Providence, RI, 1980.

[10] J. Lee, Twisted torus knots T (p, q; 3, s) are tunnel number one, J. Knot Theory Rami-
fications 20 (2011), no. 6, 807–811.

[11] S. Lee, Knot types of twisted torus knots, J. Knot Theory Ramifications 26 (2017),

no. 12, 1750074, 7 pp. https://doi.org/10.1142/S0218216517500742
[12] S. Lee, Satellite knots obtained by twisting torus knots: hyperbolicity of twisted torus

knots, Int. Math. Res. Not. IMRN 2018 (2018), no. 3, 785–815. https://doi.org/10.

1093/imrn/rnw255

[13] S. Lee, Positively twisted torus knots which are torus knots, J. Knot Theory Ramifica-

tions 28 (2019), no. 3, 1950023, 13 pp. https://doi.org/10.1142/S0218216519500238
[14] K. Miyazaki and K. Motegi, Seifert fibred manifolds and Dehn surgery, Topology 36

(1997), no. 2, 579–603. https://doi.org/10.1016/0040-9383(96)00009-2

[15] K. Miyazaki and K. Motegi, On primitive/Seifert-fibered constructions, Math. Proc.
Cambridge Philos. Soc. 138 (2005), no. 3, 421–435. https://doi.org/10.1017/

S030500410400828X

[16] K. Motegi and M. Teragaito, Generalized torsion for knots with arbitrarily high genus,
to appear in Canad. Math. Bull.

[17] G. Naylor and D. Rolfsen, Generalized torsion in knot groups, Canad. Math. Bull. 59

(2016), no. 1, 182–189. https://doi.org/10.4153/CMB-2015-004-4
[18] F. H. Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982),

no. 1, 143–147. https://doi.org/10.2307/2044414

[19] T. Paiva, Hyperbolic knots given by positive braids with at least two full twists, preprint,
arXiv:2110.09873.

[20] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286. https://doi.org/

10.1007/BF02392437
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