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Abstract. There is a special connection between the Alexander polynomial of (1, 1)-knot

and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]).

We study the polynomial(called the Dunwoody polynomial) for the (1, 1)-knot obtained

by the certain cyclically presented group of the Dunwoody 3-manifold. We prove that the

Dunwoody polynomial of (1, 1)-knot in S3 is to be the Alexander polynomial under the

certain condition. Then we find an invariant for the certain class of torus knots and all

2-bridge knots by means of the Dunwoody polynomial.

1. Introduction

We begin with the fact that every closed 3-manifold has a spine called the
Heegaard diagram, from which one can obtain the presentation for the group; how-
ever, not all group presentations arise from the spines of 3-manifolds. Therefore,
determining which cyclic presentations of groups correspond to spines of closed
3-manifolds is an open problem.

In 1968, L. Neuwirth introduced an algorithm for the construction of a con-
nected closed orientable 3-manifold from 2-complex, which corresponds to a group
presentation([17]). In 1994, M. J. Dunwoody introduced the 6-tuples yielding a fam-
ily of genus n Heegaard diagrams of closed orientable 3-manifolds called the Dun-
woody 3-manifold ([10]). In 2000, author in [19] first proposed that the branched
set in the quotient space of the Dunwoody 3-manifold is a (1, 1)-knot in S3. In
other words, at least one cyclic symmetry on the Dunwoody 3-manifold induces a
(1, 1)-knot. In 2004, it was shown that some classes of knots represented by the
Dunwoody 3-manifolds contain all (1, 1)-knots in S3 ([5]).

Conversely, for a given (1, 1)-knot K, it is an interesting problem to determine
a type of the Dunwoody 3-manifold representing K even if it is not unique. Until
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now these problems for all 2-bridge knots and some torus knots were solved in [11],
[14] and [19]. For example, the explicit type for the torus knot T (p, q) satisfying
q ≡ ±1 mod p has been obtained in [1] and [5], and for the torus knot T (p, q)
satisfying q ≡ ±2 mod p, the type has been obtained in [13]. Furthermore, in [6], it
has been obtained for all torus knots with bridge number at most three. However
to determining types of Dunwoody 3-manifolds for all torus knots is still unknown.

The Dunwoody 3-manifold plays an important role in determining which cycli-
cally presented group corresponds to a 3-manifold. Indeed, in order to study a
3-manifold with some particular group as the fundamental group, the Dunwoody
3-manifold has a Heegaard diagram from which one can obtain a presentation for
the group. Thus, to find the Dunwoody 3-manifold, one must seek a cyclically pre-
sented group associated with a 3-manifold. Furthermore, as in [12], the branched
covering space of the spatial Θ-curve containing (1, 1)-knots as the constituent knots
is related to the Dunwoody 3-manifold. Therefore the concept of the Dunwoody
3-manifold is important in knot, branched covering and graph theories.

In section 2, we introduce a set of 4-tuples representing all (1, 1)-knots , which is
determined by two permutations, and so 3-manifolds related to a set of 4-tuples are
containing the Dunwoody 3-manifolds. In particular, we prove that the strongly-
cyclic branched covering space of the Dunwoody (1, 1)-knot represented by the
certain 4-tuples is homeomorphic to the Dunwoody 3-manifold. Moreover we show
some conditions of the Dunwoody (1, 1)-knot representing a torus knot; and we also
discuss about the type of the Dunwoody 3-manifold representing the torus knot.

In Section 3, we show that the fundamental group of the Dunwoody 3-manifold
admits a cyclic presentation, which is independent of results in [4] and [16]; and we
define the Dunwoody polynomial from the cyclic presentation. As the main result,
we show that the Dunwoody polynomial for the Dunwoody (1, 1)-knot in S3 is the
Alexander polynomial under some condition. For the results in [3] and [4], they
are shown the connection between the Dunwoody polynomial and the projection of
Alexander polynomial into Z[t]/(tn − 1) for some n > 1. Moreover we show that a
certain numerical number from the Dunwoody polynomial is an invariant for some
torus knots and all 2-bridge knots of (1, 1)-knots. This result gives an answer to a
question in [10]. In this note, all lens spaces will be assumed to include S3 but not
S1 × S2. The basic facts about lens spaces are covered in [18].

2. On the Dunwoody (1, 1)-knots

Let (V1, V2) be a Heegaard splitting with genus n of a closed orientable 3-
manifold M . A properly embedded disc D in the handlebody V2 is called a meridian
disc of V2 if cutting V2 along D yields a handlebody of genus n−1. A collection of n
mutually disjoint meridian discs {Di} of V2 is called a complete system of meridian
discs of V2 if cutting V2 along ∪iDi gives a 3-ball. Let ci denote the 1-sphere ∂Di

which lies in the closed orientable surface ∂V1 = ∂V2 of genus n. Then the system is
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said to be a Heegaard diagram of M denoted by (V1; c1, c2, · · · , cn). Let M be a lens
space and K be a knot in M . Then the pair (M,K) admits a (1, 1)-decomposition
if there exists a Heegaard splitting of genus one (V1,K1)∪ϕ (V2,K2) of (M,K) such
that (V1; c1) is a Heegaard diagram of M, and K1 ⊂ V1 and K2 ⊂ V2 are properly
embedded trivial arcs, where ϕ is an attaching homeomorphism.

We now introduce the Dunwoody (1, 1)-decomposition of (M,K) determined
by two permutations and 4-tuples (a, b, c, r), where a > 0, b ≥ 0, c ≥ 0, r ∈ Zd, and
d = 2a+b+c. Let m+ and m− be two circles with each other different orientations,
and let X+ = {1, 2, · · · , d} and X− = {−1,−2, · · · ,−d} be sets of d vertices in m+

and m−, respectively. We now define two permutations α and β as below, where
all numbers are under mod d.

α(j) =


d− j + 1 if 1 ≤ j ≤ a
−j − c if a+ 1 ≤ j ≤ a+ b
−j + b if a+ b+ 1 ≤ j ≤ a+ b+ c
−d− j − 1 if − a ≤ j ≤ −1

and

β(j) =

{
−j + r if r < j
−j + r − d otherwise

.

The cycle expressions of α and β are the following.

α = (1, d)(2, d− 1)(3, d− 2) · · · (a, d− a+ 1)

(a+ 1,−(a+ c+ 1)) · · · (a+ b,−(a+ c+ b))

(a+ b+ 1,−(a+ 1)) · · · (a+ b+ c,−(a+ c))

(−1,−d)(−2,−(d− 1)) · · · (−a,−(d− a+ 1)) (∗)

and
β = (1,−(1− r))(2,−(2− r)) · · · (j,−(j − r))

· · · (d,−(d− r)). (∗∗)

We note that each 2-cycle in α consists of the end points of a curve connecting
m+ and m− or themselves as the rule of Figure 1; and each 2-cycles in β generates
a meridian disk m, by gluing the corresponding points in m+ and m− via β. For
example, (r,−(r−r)) means that the number r of m+ is identified with the number
−(r − r) = −0 = −d in m−. Thus βα determines the genus one solid torus V1 and
the disjoint simple closed curves on ∂V1.

Theorem 2.1. If L is the number of the disjoint simple closed curves on ∂V1, then
there are two permutations α and β such that |α|− |β|+2L = |βα|, where | · | means
the number of disjoint cycles in a permutation.

Proof. Let d = 2a+b+c. LetX+ = {1, 2, · · · , d} andX− = {−d,−d+1, · · · ,−1} be
sets of d points in m+ andm−, respectively. Then the permutation α is consisting of
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Figure 1: The Dunwoody (1, 1)-decomposition D(a, b, c, r)

d 2-cycles by two end points of line segments connecting m+ and m− or themselves
on ∂V1, and the permutation β is consisting of d 2-cycles connecting m+ and m−

on ∂V1. We now define an equivalence relation on X = X+ ∪X− by

x ∼ y if y = (βα)
i
(x) or y = α(βα)

i
(x) for some i.

Then we call the equivalence classes of X under the relation the orbits of βα. Let
l be a simple closed curve on ∂V1 and x be a point on m+ meeting l. Then l is
determined by the repeated applications of α and β as follows;

x, α(x), βα(x), αβα(x), . . . , αβ · · ·α(x),

which forms an orbit of βα. Each orbit of βα determines a simple closed curve in
∂V1. Let Y1, . . . , YL be orbits of βα. If x ∈ Yi and d is the smallest positive integer
such that (αβ)d(x) = x, then on Yi, βα is expressed as a product βiαi of two disjoint
permutations αi and βi of the same length:

αi = (x, βα(x), (βα)2(x), . . . , (βα)d−1(x))

and
βi = (α(x), αβα(x), . . . , (αβ)d−1α(x)).

Furthermore the βiαi are pairwise disjoint and

βα = (βLαL) · · · (β2α2)(β1α1).

Moreover
|βα| = |βLαL|+ · · ·+ |β1α1| = 2L. 2

Since two consecutive cycles in βα determine a simple closed curve (which is
isotopic to c1 = ∂D1) on ∂V1, we assume that l is the simple closed curve determined
by α and β on ∂V1 whenever L = 1. Let K1 be a trivial arc in V1 such that
K1 ∩ ∂V1 = ∂K1, which is situated inside the bigons bounded by 2-cycles (1, d) and
(−1,−d) as shown in Figure 1. Then a set of 4-tuples of integers

D = {(a, b, c, r)|a > 0, b ≥ 0, c ≥ 0,
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d = 2a+ b+ c, r ∈ Zd, |αβ| = 2}

admits a (1, 1)-decomposition of (M,K) called the Dunwoody (1, 1)-decomposition.
For each (a, b, c, r) in D, we denote the Dunwoody (1, 1)-decomposition of (M,K)
by D(a, b, c, r). (See Figure 1.) Moreover, we denote a (1, 1)-knot K represented by
D(a, b, c, r) by K(a, b, c, r), and call it the Dunwoody (1, 1)-knot. We note that every
(1, 1)-knot can be represented by the Dunwoody (1, 1)-knot and vice versa([5]). The
representation of a (1, 1)-knot by Dunwoody (1, 1)-decomposition is not unique. For
example, both K(1, 3, 4, 7) and K(2, 1, 4, 4) represent the pretzel knot P (−2, 3, 7)
which is a (1, 1)-knot as was mentioned in [19]. The subset of D representing all
2-bridge knots was determined by [11], [14] and [19]. However, the subset of D
representing all torus knots is not yet determined completely. In [1], [5], [13] and
[6] we have Dunwoody (1, 1)-decompositions representing the certain class of torus
knots.

We now construct a family of 3-manifolds which are the n-fold strongly-cyclic
coverings branched over Dunwoody (1, 1)-knots. Let M be a lens space and K be
a Dunwoody (1, 1)-knot in M. Then the n-fold cyclic covering of M branched over
K is completely defined by an epimorphism C : H1(M − K) → Zn, where Zn is
the cyclic group of order n. Let r1 be a generator of ∂V1, which is the boundary of
the meridian disk meeting with K1 at one point and let r2 be a generator of ∂V1,
which is the longitude curve meeting with r1 at one point. Then every curve of
∂V1 determined by two permutations α and β is generated by r1 and r2. In other
words, the orbit l of βα is generated by r1 and r2. We define li(1 ≤ i ≤ 6) from the
oriented curve l on D(a, b, c, r) as follows.

• l1 is the number of left directed arrows from m+ or m− to m+ or m− in a
edges respectively.

• l2 is the number of right directed arrows from m+ or m− to m+ or m− in a
edges respectively.

• l3 is the number of arrows directed from m+ to m− in b edges.

• l4 is the number of arrows directed from m− to m+ in b edges.

• l5 is the number of arrows directed from m+ to m− in c edges.

• l6 is the number of arrows directed from m− to m+ in c edges.

From now on for D(a, b, c, r) we let p = (l3 + l5)− (l4 + l6), q = (l1 + l3)− (l2 + l4)
and d = 2a + b + c. If p = ±1 or p = 0, then M is S3 or S1 × S2([11] and [12]),
respectively. Thus p ̸= 0 if M is not S1 × S2. We have π(M) = ⟨x|x±p⟩ = Z|p| and
H1(M − K) = ⟨r1, r2|pr2 + qr1⟩ = Z ⊕ Zgcd(p,q). By definition, the n-fold cyclic
covering f of M branched over K is called strongly-cyclic if the branching index
of K is n. That is, the fiber f−1(x) of each point x ∈ K contains a single point.
Therefore the homology class of a meridean loop r1 around K is mapped by C
in a generator of Zn, say C(r1) = 1, and so there exists an n-fold strongly-cyclic
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covering space M of M branched over K if and only if there is s = C(r2) ∈ Zn

such that ps+ q ≡ 0 mod n. We call the diagram in Figure 2 a Heegaard diagram
of M and denote it by Dn(a, b, c, r, s). If the Dunwoody (1, 1)-knot K is in S3, the

a a

a a

ccc

r

i +1i-1i

+i s

1

+i s+1+i s-1

b b

Figure 2: A Heegaard diagram Dn(a, b, c, r, s)

strongly-cyclic branched covering is the same that cyclic branched covering. Indeed
the n-fold cyclic branched covering of K in S3 always exists and is unique up to
equivalence for n > 1 because H1(S3 −K) = Z, the homology class r1 is mapped
by C in a generator of Zn and s = C(r2) = −q.

We have proved the following.

Theorem 2.2. Let D(a, b, c, r) be the Dunwoody (1, 1)-decomposition of (M,K)
and n > 1. Then M is homeomorphic to a 3-manifold if and only if there is an
integer s such that ps+ q ≡ 0 mod n.

We notice that Dn(a, b, c, r, s) satisfies the conditions for the Heegaard diagram
of the Dunwoody 3-manifold considered in [10]. Thus we have the following.

Corollary 2.3. Let M be a lens space and K be a Dunwoody (1, 1)-knot in M . Then
the n-fold strongly-cyclic covering space M of M branched over K is homeomorphic
to the Dunwoody 3-manifold.

Corollary 2.4. [12] D(a, b, c, r) is the (1, 1)-decomposition of (S3,K) if and only
if |p| = 1.

From the result of Corollary , if d = 2a+ b+ c is even, then D(a, b, c, r) cannot
be a (1, 1)-decomposition of (S3,K) because d has the same parity of p. (See [15]
for detail.)

Generally, for the following set

S = {(a, b, c, r)|a > 0, b ≥ 0, c ≥ 0,

d = 2a+ b+ c, r ∈ Zd, |αβ| = 2L},
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we suppose that L ≥ 2 is the number of simple closed curves determined by α
and β on ∂V1. Given an (a, b, c, r) ∈ S, it is possible to represent a link in lens
spaces containing S3 and S1×S2. Thus the orientable 3-manifold M in existing is a
generalization of the Dunwoody 3-manifold introduced in [10], called the generalized
Dunwoody 3-manifold. (See [15],[13] or [7] for some examples.)

We let L = 1. That is, for each (a, b, c, r) ∈ D, K(a, b, c, r) is the Dunwoody
(1, 1)-knot in a lens space or S3. We now consider the Dunwoody (1, 1)-knot repre-
senting the torus knot. The torus knot is a knot embedded in the standard torus T
in S3. Regarding T as the boundary of tubular neighborhood of trivial knot in S3,
we take a meridian-longitude system (m1,m2) of trivial knot on T . The torus knot
is said to be of type (k1, k2), denoted by T (k1, k2), if it is homologous to k1m1+k2m2

in T for some coprime integers k1 and k2.

The Dunwoody (1, 1)-knots representing T (k1, k2) with k2 ≡ ±1 mod k1 have
been obtained in [1] and [5]. Moreover, the Dunwoody (1, 1)-knots representing the
torus knots with bridge number at most three have been obtained in [6]. Further-
more the Dunwoody (1, 1)-knots representing T (k1, k2) with k2 ≡ ±2 mod k1 have
been obtained in [13] with explicit formulae: (i) T (k1, k2) with k2 ≡ 2 mod k1 is
represented by K(a, b, c, r), where

(2.1)


a = k1−1

2
b = 1

c = (k1+1)(k1−1)(k2−2)
2k1

r = −k1+(k1)
2k2−k2+2−(k1)

3

2k1
,

and (ii) T (k1, k2) with k2 ≡ −2 mod k1 is represented by K(a, b, c, r) where

(2.2)


a = k1−1

2
b = 1

c = (k1)
2k2−2(k1)

2−k2−2
2k1

r = 1
2 (k1)

2 − 3
2 .

In the following theorem the conditions for K(a, b, c, r) to represent a torus knot
will be given where |X1 ∩X2| means the number of intersecting points between two
sets X1 and X2.

Theorem 2.5. Let D(a, b, c, r) be the Dunwoody (1, 1)-decomposition of (S3,K).
Suppose that m is the meridian disk determined by β and l is the simple closed
curve defined by βα such that |K1 ∩K2| = 2, |K1 ∩ l| = k1, and |K2 ∩m| = k2, for
some coprime integers k1 and k2. Then K(a, b, c, r) is T (k1, k2), where k1 = 2a+ b
and k2 ≤ c+ 2.

Proof. There exists a Heegaard splitting of genus one (V1,K1)∪ϕ(V2,K2) of (S3,K),
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where V1 and V2 are solid tori, K1 ⊂ V1 and K2 ⊂ V2 are properly embedded trivial
arcs, and ϕ : (∂V2, ∂K2) → (∂V1, ∂K1) is an attaching homeomorphism. Since
|K1 ∩K2| = 2, K1 and K2 do not meet each other except the bigons determined by
the 2-cycles (1, d) and (−1,−d). Thus the meridian-longitude system (m, l) satisfies
|K1 ∩ l| = 2a + b and |K2 ∩ m| ≤ c + 2. Let k1 = 2a + b and k2 = |K2 ∩ m| be
integers satisfying gcd(k1, k2) = 1. Then K = K1∪ϕK2 is homologous to k1m+k2l
in V1. Therefore K(a, b, c, r) is T (k1, k2). 2

The inequality k2 ≤ c + 2 in Theorem 2.5 is the generalization of Theorem
4.2(iii) in [8]. That is, K(1, 0, 2k − 1, 2) is equivalent to T (2k + 1, 2). We also note
that the Dunwoody (1, 1) -decomposition D(a, b, c, r) representing T (k1, k2) with
k2 ≡ ±2 mod k1 satisfies the conditions in Theorem 2.5.

Example 1. Let D(1, 2, 3, 3) be a (1, 1)-decomposition of (S3,K) = (V1,K1) ∪ϕ

(V2,K2) and |(l3+ l5)− (l4+ l6)| = 1. (See Figure 3.) Then |K1∩ l| = 4, |K2∩m| =
5, and |K1 ∩ K2| = 2, which are marked by circled numbers, numbers and dots
respectively in Figure 3. Thus D(1, 2, 3, 3) satisfies the conditions of Theorem 2.5
and so K(1, 2, 3, 3) is T (4, 5).

Figure 3: A (1, 1)-decomposition D(1, 2, 3, 3) of T (4, 5)

3. The Alexander polynomial vs the Dunwoody polynomial

In this section, we show that (i) the certain polynomial of the Dunwoody (1, 1)-
knot in S3 is the Alexander polynomial, and that (ii) if K(a, b, c, r) is the Dunwoody
(1, 1)-knot representing 2-bridge knot or some torus knots, then the number d =
2a + b + c is an invariant for K(a, b, c, r). For the Dunwoody polynomial, (i) gives
an answer to a question in [10].

Theorem 3.1. The n-fold strongly-cyclic branched covering of the Dunwoody (1, 1)-
knot in a lens space admits a cyclically presented fundamental group.

Proof. When we consider the Dunwoody (1, 1)-knot K(a, b, c, r) in a lens space,
βα has two cycles of length d such that (βα)d(x) = x for each x on D(a, b, c, r) by
Theorem 2.1. Thus the n-fold strongly-cyclic branched covering of K(a, b, c, r) is
homeomorphic to the Dunwoody 3-manifold Dn(a, b, c, r, s). Since ps+q ≡ 0 mod n,
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the path corresponding to this cycle connects the endpoint labelled 1 in the hole
labelled 0 to the endpoint labelled 1 in the hole labelled ps+ q under mod n.
That is, the condition ps+ q ≡ 0 mod n ensures that the path corresponding to the
cycles is a simple closed curve with an orientation. SinceDn(a, b, c, r, s) has n simple
closed curves, each path starting at the endpoint labelled 1 in the hole labelled i
corresponding to the cycles of βα will be connected to the endpoint labelled 1 in
the hole labelled i under mod n. With notations in [13], w(Ci)(resp. w(C̄i)) is
a cyclic presentation obtained by reading off simple closed curves around the hole
labelled i(resp. i). Thus the identification of Ci and C̄i by r on Dn(a, b, c, r, s)
induces w(Ci) ≈r w(C̄i). If i = 0, then

uηs(c)ηs−1(b)η−1(u−1) ≈r abcη−1(a−1),

from which we have a cyclic presentation for the fundamental group. 2

For the specific example, let the Dunwoody (1, 1)-knot K(a, b, c, r) represent
T (p, q) such that p is odd and q ≡ ±2 mod p. Then the n-fold cyclic covering of S3
branched over K(a, b, c, r) satisfies uηs(c) ηs−1(b) η−1(u−1) ≈r abc η−1(a−1) (for
reference see [13]), where the parameter s is equal to −s in [13].

From [3], [9] and [20], we recall the definition of the Alexander polynomial of a
knot in compact connected 3-manifold. We also note that every finitely generated
abelian group G is a direct sum of a torsion-free part F (G) and a torsion-part T (G).
For the group G, we denote its integral group ring by Z[G]. In particular, the first
homology group H1(N) of a compact connected 3-manifold N has a decomposition

H1(N) ∼= F (H1(N))⊕ T (H1(N)).

The projection J : H1(N) → H1(N)/T (H1(N)) induces the ring homomorphism
J ′ : Z[H1(N)] → Z[H1(N)/T (H1(N))]. If k is the first Betti number of N and
t1, · · · , tk are generators of H1(N)/T (H1(N)), then we have

Z[H1(N)/T (H1(N))] ∼= Z[t1, t−1
1 , · · · , tk, t−1

k ].

Let h : π1(N, ∗) → H1(N) be the Hurewitz homomorphism, where ∗ is a fixed
point in N . Denote E1(N) ⊂ Z[H1(N)] and E′

1(N) with the first elementary
ideal of π1(N, ∗) and the smallest principal ideal of Z[H1(N)/T (H1(N))] containing
J ′(E1(N)), respectively. The generator △N of E′

1(N) is well-defined up to multipli-
cation by units of Z[t1, t−1

1 , · · · , tk, t−1
k ] and is said to be the Alexander polynomial

of N . Let K be a knot in a compact connected 3-manifold M . Then the Alexander
polynomial △N of N = M − K is the Alexander polynomial of K and it will be
denoted by △K instead of △N for a knot K.

Let R be a unital commutative ring and let

Gn
∼=< x0, x1, · · · , xn−1|r0, · · · , rn−1 >



232 Soo Hwan Kim and Yangkok Kim

be a finitely-presented R-module, where each relation ri is a linear combination of
the generators xj : ri = ai0x0+ · · ·+ai(n−1)xn−1. In other words, Gn is generated as
an R module by the elements x0, · · · , xn−1, and r0 = 0, · · · , rn−1 = 0 are relations
among the xi’s. Then we can define a presentation matrix to be an n × n matrix
with entries aij for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1. An Alexander matrix is a

presentation matrix for H1(X̃) as a Z[t, t−1] module, where X̃ is the infinite cyclic
cover of the knot complement N . The ideal generated by the Alexander matrix
is the Alexander ideal of the knot, so the Alexander ideal is principal([18], P.207).
Any generator of this principal ideal is the Alexander polynomial △K for a knot
K. In fact, it was discovered by Alexander [2] in the 1920s, early in the history of
topology, using the homology of the infinite cyclic cover of a knot complement.

In this section, let M be a lens space and denoted by L(p, q′), where p and
q′ are relatively prime. Considering the Dunwoody (1, 1)-knot K in M , we have
F (H1(N)) ∼= Z and T (H1(N)) ∼= Zgcd(p,q). Thus △K(t) ∈ Z[t, t−1] is the Alexander
polynomial of K. In particular, for K in S3, △K(t) ∈ Z[t, t−1] has the properties
(i) △K(t) = △K(t−1) and (ii) △K(1) = ±1. Vice verse, every polynomial in
Z[t, t−1] satisfying (i) and (ii) is the Alexander polynomial of a knot in S3 ([9]).
However, by Theorem B in [20], for the Alexander polynomial of K in M , it is true
for the condition (i), but the condition (ii) is no longer true. See also [21].

Now we introduce the Dunwoody polynomial of the Dunwoody (1, 1)-knot K =
K(a, b, c, r), and study the connections between the Dunwoody polynomial and the
Alexander polynomial for K. Let n > 1. Then the n-fold strongly-cyclic branched
covering Dn(a, b, c, r, s) of K in M admits a cyclically presented fundamental group
by Corollary 2.3 and Theorem 3.1. Due to the cyclic symmetry of Dn(a, b, c, r, s),
the fundamental group has the cyclic presentation induced by a single word w(x0,
x1, · · · , xn−1) as following:

Gn(w(x0, x1, · · · , xn−1)) = ⟨x0, x1, · · · , xn−1|

θj(w(x0, x1, · · · , xn−1)), 0 ≤ j ≤ n− 1⟩

where θ is the automorphism on the free group Fn = ⟨x0, · · · , xn−1⟩ of rank n
defined by θ(xi) = xi+1 and all indices are taken under mod n. Since θ is an auto-
morphism of order n, the relations

{θj(w(x0, x1, · · · , xn−1))|0 ≤ j ≤ n− 1}

are independent of j with 0 ≤ j ≤ n− 1, that is, for any 0 ≤ j ≤ n− 1,

Gn(w(x0, x1, · · · , xn−1)) ∼=

Gn(θ
j(w(x0, x1, · · · , xn−1))).

The relations θj(w(x0, x1,· · · , xn−1)), 0 ≤ j ≤ n − 1, are determined by n dis-
joint simple closed curves on Dn(a, b, c, r, s). For a relation w(x0, x1,· · · , xn−1) ∈
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{θj(w(x0, x1, · · · , xn−1))|0 ≤ j ≤ n − 1}, the relation w(x0, x1, · · · , xn−1) is said
to be principal if all indices in w(x0, x1, · · · , xn−1) are independent of n. For the
cyclic presentation Gn(w(x0, x1, · · · , xn−1)) by w(x0, x1, · · · , xn−1), we obtain the

abelianized word
∑k

i=0 aix̄i, (ai ∈ Z), of w and a polynomial fn
w(t) =

∑k
i=0 ait

i ∈
Z[t, t−1] obtained by substituting ti into x̄i is called the Dunwoody polynomial de-
termined by Dn(a, b, c, r, s). Moreover, by the multiplications of ±tj (j ∈ Z), we
can normalize fn

w(t) ∈ Z[t, t−1] in order to have the polynomial with a positive
constant term and positive exponents in Z[t]. Let fn

w(t) ∈ Z[t] and n > 1. Then
fn
θj(w)(t)(0 ≤ j ≤ n − 1) are different polynomials in Z[t], but they are the same

in the quotient ring Z[t]/(tn − 1), up to units. From now on, we will consider the
Dunwoody polynomial fn

wk
(t) as an element of Z[t]/(tn − 1). For some n, we say

that Dn(a, b, c, r, s) admits the principal cyclic presentation Gn(w) if w is principal.

Example 2. For n > 4, π(Dn(3, 1, 2, 2,−1)) has a cyclic presentation induced by

w(x0, x1, x2, x3, x4) = x1x2x3x
−1
4 x3x

−1
2 x−1

2 x1x
−1
0 .

Thus π(Dn(3, 1, 2, 2,−1)) is presented by

⟨x0, x1, · · · , xn−1|θj(x1x2x3x
−1
4 x3x

−1
2 x−1

2 x1x
−1
0 ),

0 ≤ j ≤ n− 1⟩.
Thus fn

w(t) = 1 − 2t + t2 − 2t3 + t4 is the Dunwoody polynomial determined by
Dn(3, 1, 2, 2,−1). Since

w(x0, x1, x2, x3, x4) = x1x2x3x
−1
4 x3x

−1
2 x−1

2 x1x
−1
0

is independent of n(> 4), it is a principal relation. Indeed that the Dunwoody (1, 1)-
knot K(3, 1, 2, 2) represents the knot 942 in the knot table classified by Rolfsen. It is
interesting to note that the Dunwoody polynomial fn

w(t) for n > 4 is the Alexander
polynomial of 942.

For the Dunwoody (1, 1)-knot K = K(a, b, c, r) in S3, the following shows that
fn
w(t) is to be the Alexander polynomial of K.

• If wk = w(x0, x1, · · · , xk) is the principal relation of the Dunwoody 3-
manifold represented by Dn(a, b, c, r, s) for some n, then fn

w(t) is the Alexan-
der polynomial of K in S3.

In particular, the Dunwoody (1, 1)-knot K = K(a, b, c, r) defined in (2.1) and (2.2)
for K = T (k, hk±2) with h, k > 0 induces the Dunwoody 3-manifold represented by
Dn(a, b, c, r, s) for some s. Using the principal relation, say w, of Dn(a, b, c, r, s), we
can obtain the Dunwoody polynomial fn

w(t) such that fn
w(t)

.
= △K(t). For example,

let K be a torus knot T (5, 7) satisfying 7 ≡ 2 mod 5. On Dn(2, 1, 12, 13,−5) with
n > 29, we can obtain a relation w as the following

w = x−1
0 x1

1x
1
6x

1
11x

1
16x

−1
17 x

−1
12 x

−1
7 x1

8x
1
13x

1
18x

1
23x

−1
24
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x−1
19 x

−1
14 x

−1
10 x

−1
5 .

Then the relation w is principal in Dn(2, 1, 12, 13,−5) for condition n > 29. Thus
it was shown in [13] that fn

w(t) is the Alexander polynomial of K.

For each knot K in S3, we denote the projection of △K(t) into Z[t]/(tn − 1)
with △n

K(t). The following corollary shows the connections between the projection
of Alexander polynomial into Z[t]/(tn − 1) and the Dunwoody polynomial for the
Dunwoody (1, 1)-knot in S3.

Corollary 3.2([4]). Let D(a, b, c, r) be the Dunwoody (1, 1)-decomposition of
(S3,K) and n > 1. Then fn

w(t)
.
= △n

K(t) in Z[t]/(tn − 1), where
.
= means equal up

to units.

The following corollary is required the degree of the Alexander polynomial in
order to obtain the Dunwoody polynomial.

Corollary 3.3([4]). Let K be the Dunwoody (1, 1)-knot representing T (k, hk ± 1)
with h, k > 0 and n > 1. Suppose that fn

w(t) is the Dunwoody polynomial associated
to the cyclic presentation obtained by applying Theorem 7 in [4]. Then fn

w(t)
.
=

△K(t) in Z[t]/(tn − 1) if n > deg(△K(t)), where
.
= means equal up to units.

For example, no more the result of Corollary 3.3 is true for T (5, 7) and
deg(△K(t)) = 24. In fact, for n = 25, the relation w is not principal because
x23 and x−1

24 in w are equal to x−2 and x−1
−1 under D25(2, 1, 12, 13,−5), respectively,

that is, w is not independent of 25. Thus w is equal to the relation

x−1
0 x1

1x
1
6x

1
11x

1
16x

−1
17 x

−1
12 x

−1
7 x1

8x
1
13x

1
18x

1
−2x

−1
−1x

−1
19 x

−1
14 x

−1
10 x

−1
5

on D25(2, 1, 12, 13,−5). In case of Corollary 3.3, we have to know the degree of
△K(t) in order to show that fn

w(t) is to be the Alexander polynomial ofK. However,
without the condition for the degree of △K(t), we can show that fn

w(t) is to be the
Alexander polynomial of the torus knot K(generally, the Dunwoody (1, 1)-knot in
S3) from properties itself.

As the main result of this section, we show that the Dunwoody polynomial is to
be the Alexander polynomial. In other words we give the condition for n in order
that Dn(a, b, c, r, s) admits always the principal cyclic presentation.

Given p and q defined onD(a, b, c, r) which is the Dunwoody (1, 1)-decomposition
determined by two permutations α and β such that |βα| = 2, we recall that
Dn(a, b, c, r, s) satisfies ps + q ≡ 0 mod n for some n > 1 and s ∈ Z. First of
all, we define a cyclic sequence from Dn(a, b, c, r, s) as follows. We set

A+ = {1, 2, · · · , a},

B+ = {a+ 1, a+ 2, · · · , a+ b},

C+ = {a+ b+ 1, a+ b+ 2, · · · , a+ b+ c},
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E+ = {a+ b+ c+ 1, a+ b+ c+ 2, · · · , a+ b+ c+ a = d},

A− = {−1,−2, · · · ,−a},

C− = {−a− 1,−a− 2, · · · ,−a− c},

B− = {−a− c− 1,−a− c− 2, · · · ,−a− c− b}, and

E− = {−a− c− b− 1,−a− c− b− 2, · · · ,

−a− c− b− a = −d}.

Then A+∪B+∪C+∪E+ = X+ and A−∪C−∪B−∪E− = X−. For each 0 ≤ i ≤ n−1,
let Ci be the i-th meridian disk i of the Heegaard diagram Dn(a, b, c, r, s) as in
Figure 2, and C̄i the i-th meridian disk ī of the Heegaard diagram Dn(a, b, c, r, s).
For 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ d, a point (i, j) on Dn(a, b, c, r, s) means the
number j in i-th meridian disk Ci, and a point (̄i,−j) means the number −j in
i-th meridian disk C̄i, So if (i, j) ∈ Dn(a, b, c, r, s) is a starting point at Ci, then
θn−1(i, j) = (i + n − 1, j) is a starting point at θn−1(Ci). We define the rules
corresponding to i on Dn(a, b, c, r, s) and α on D(a, b, c, r) by

(3.1)


(i, a) → (i+ 1, α(a)) if a ∈ A+

(i, b) → (i+ s+ 1, α(b)) if b ∈ B+

(i, c) → (i+ s, α(c)) if c ∈ C+

(i, e) → (i− 1, α(e)) if e ∈ E+

.

The rules corresponding to ī on Dn(a, b, c, r, s) and α on D(a, b, c, r) are defined by

(3.2)


(̄i,−a) → (i+ 1, α(−a)) if − a ∈ A−

(̄i,−c) → (i− s, α(−c)) if − c ∈ C−

(̄i,−b) → (i− (s+ 1), α(−b)) if − b ∈ B−

(̄i,−e) → (i− 1, α(−e)) if − e ∈ E−

.

Moreover, the identification between i-th meridian disk Ci and i-th meridian disk
C̄i on Dn(a, b, c, r, s) is defined by

(3.3)

{
(i, x) → (̄i, β(x)) if x ∈ X+

(̄i,−x) → (i, β(−x)) if − x ∈ X− .

By the property of the n-fold strongly-cyclic branched covering space, we have the
following.

Lemma 3.4. Let (0, 1) be a starting point on Dn(a, b, c, r, s) and d = 2a + b + c.
Then we have (βα)d(0, 1) = (ps+ q, 1).

Proof. From α and β defined in Theorem 2.1, βα with length d determines the
simple closed curve in D(a, b, c, r) with the starting point (0, 1). The simple closed
curve is lifted to n simple closed curves on Dn(a, b, c, r, s) which is determined by
(3.1), (3.2) and (3.3). For 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ d, if (i, j) ∈ Dn(a, b, c, r, s) is
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a starting point of a curve of the n simple closed curves on Dn(a, b, c, r, s), we have
(βα)d(i, j) = (ps+ q+ i, j) because of ps+ q ≡ 0 mod n. In particular, let (0, 1) be
a starting point on Dn(a, b, c, r, s). Then the proof follows from the above result. 2

For 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ d, if (i, j) ∈ Dn(a, b, c, r, s) is a starting point,
we have a sequence

(i, j) → (βα)(i, j) → (βα)2(i, j) · · · →

(βα)d−1(i, j) → (βα)d(i, j) = (ps+ q + i, j).

The sequence from (i, j) to (ps + q + i, j) determined by (3.1), (3.2) and (3.3) is
called a cyclic sequence of Dn(a, b, c, r, s). We note that the cyclic sequences of
Dn(a, b, c, r, s) are independent of the choice of the starting points on itself.

We now suppose that (0, 1) is a starting point which is the number 1 in 0-th
meridian disk of Dn(a, b, c, r, s). Since 1 ∈ A+ and α(1) = d, we have (0, 1) → (1, d)
by (3.1). Since r < d, β(d) = −d + r and so (1, d) → (1̄,−d + r) by (3.3). Thus
(0, 1) → (1̄,−d+r) under βα, or βα(0, 1) = (1̄,−d+r). Applying repeated process,
we obtain (βα)d(0, 1) = (ps+ q, 1) by Lemma 3.4. We define a relation

w = x0x
±1
βα(0)x

±1
(βα)2(0)x

±1
(βα)3(0) · · ·x

±1
(βα)d−1(0)

on Dn(a, b, c, r, s) induced by the cyclic sequence of Dn(a, b, c, r, s), where

x±1
(βα)k(0)

=

{
x(βα)k(0) if (βα)k(0) = i

x−1
(βα)k(0)

if (βα)k(0) = ī.

If (βα)k(0) = −i and (βα)k(0) = −i, then x±1
(βα)k(0)

= x−1
−i and x±1

(βα)k(0)
= x−i,

respectively. We can assume that (βα)k(0) ≥ 0 under mod n for all 1 ≤ k ≤ d. For
each 0 ≤ i ≤ n − 1, we note that θi(w) has the starting point (i, 1) and the final
point (ps+ q+ i, 1) with (βα)d(i, 1) = (ps+ q+ i, 1). Thus the abelianized word of
w induces the Dunwoody polynomial

fn
w(t) = t0 ± tβα(0) ± t(βα)

2(0) ± · · · ± t(βα)
d−1(0)

by substituting −t−i into x−1
−i . If |(βα)k(0)| < n for each 1 ≤ k ≤ d − 1,

then w is the principal relation of the cyclic presentation of Dn(a, b, c, r, s) and
we have deg(fn

w(t)) = M+ − M− where M+ = max0≤k≤d−1{(βα)k(0)} and
M− = min0≤k≤d−1{(βα)k(0)}.

Suppose that D(a, b, c, r) is the Dunwoody (1, 1)-decomposition representing a
(1, 1)-knot K in S3. Since p = ±1 and ps + q = 0, s = ∓q. For each n > 1,
there exists the Dunwoody 3-manifold represented by Dn(a, b, c, r, s), which is the
n-fold (strongly-) cyclic covering of S3 branched over K. By Lemma 3.4, the
cyclic sequence of Dn(a, b, c, r, s) has (βα)d(0, 1) = (0, 1). Since each {Ci, C̄i+s}
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in Dn(a, b, c, r, s) is connected by c edges, the relation w is independent of n if
n > M+−M−+ |s|. Therefore fn

w(t) is the Alexander polynomial of the Dunwoody
(1, 1)-knot K in S3 if n > M+−M−+ |s|. We remark that there is a natural way to
obtain the Dunwoody polynomial fn

w(t) ∈ Z[t]/(tn−1)) associated to the Dunwoody
(1, 1)-knot K in S3 because of the uniqueness of s in Zn with ps + q ≡ 0 mod n.
Summarizing, we have proved the following.

Theorem 3.5. Let D(a, b, c, r) be the Dunwoody (1, 1)-decomposition of (S3,K),
and α and β be two transpositions defined in Theorem 2.1. Let w(x0, · · · , xn−1) be
a relation induced by the cyclic sequence of Dn(a, b, c, r,∓q) for n > 1, M+ =
max0≤k≤d−1{(βα)k(0)} and M− = min0≤k≤d−1{(βα)k(0)}. Then fn

w(t) is the
Alexander polynomial of K if n > M+ −M− + |s|.

We give two canonical examples as follows.

Example 3.

(0, 1)
α−→ (1, 9)
β

↙
(1̄, −4)

α−→ (8, 7)
↙β

(8̄, −2)
α−→ (9̄, −8)

↙β

(9, 4)
α−→ (3̄, −6)

↙β

(3, 2)
α−→ (4, 8)

↙β

(4̄, −3)
α−→ (11, 6)

↙β

(1̄1, −1)
α−→ (1̄2, −9)

↙β

(12, 5)
α−→ (6̄, −7)

↙β

(6, 3)
α−→ (0̄, −5)

↙β

(0, 1).

Let D(2, 3, 2, 5) be a Dunwoody (1, 1)-decomposition. Then we obtain p = 1 and
q = 7 from an oriented curve on D(2, 3, 2, 5) defined in section 2. Since p = 1,
it is representing a Dunwoody (1,1)-knot K(2, 3, 2, 5) in S3. Since q = 7, we have
s = −7. Therefore, for all n > 1, there exists a Dunwoody 3-manifold represented
by Dn(2, 3, 2, 5,−7). In order to show a principal relation on Dn(2, 3, 2, 5,−7) we
need a cyclic sequence as above. For a Dunwoody (1, 1)-decomposition D(2, 3, 2, 5),
setting A+ = {1, 2}, B+ = {3, 4, 5}, C+ = {6, 7}, E+ = {8, 9}, and A− = {−1,−2},
C− = {−3,−4}, B− = {−5,−6,−7}, and E− = {−8,−9}, then we have A+∪B+∪
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C+ ∪ E+ = X+ and A− ∪ C− ∪ B− ∪ E− = X−. Let (0, 1) be the starting point
on Dn(2, 3, 2, 5,−7). Then we have a cyclic sequence by applying (3.1), (3.2) and
(3.3) as above. Thus the relation w induced by the above cyclic sequence is

w = x0x
−1
1 x−1

8 x9x3x
−1
4 x−1

11 x12x6

and the Dunwoody polynomial fn
w(t) is

fn
w(t) = 1− t+ t3 − t4 + t6 − t8 + t9 − t11 + t12.

Since M+ = 12 and M− = 0, the relation w on Dn(2, 3, 2, 5,−7) is principal for
n > 19. In fact, fn

w(t) is the Alexander polynomial of K(2, 3, 2, 5) representing
T (3, 7), which can be obtained by considering the principal cyclic presentation of
D20(2, 3, 2, 5,−7).

Example 4.

(0, 1)
α−→ (1, 9)

↙β

(1̄, −3)
α−→ (−2, 4)

↙β

(−2, −7)
α−→ (−6, 3)

↙β

(−6, −6)
α−→ (−9, 7)

↙β

(−9, −1)
α−→ (−8, −9)

↙β

(−8, 6)
α−→ (−5, −5)

↙β

(−5, 2)
α−→ (−4, 8)

↙β

(−4, −2)
α−→ (−3, −8)

↙β

(−3, 5)
α−→ (0̄, −4)

↙β

(0, 1).

Let D(2, 1, 4, 6) be a Dunwoody (1, 1)-decomposition with p = −1 and q = 3. Since
ps+q = 0, there exists a Dunwoody 3-manifold represented byDn(2, 1, 4, 6, 3) for all
n > 1. To obtain a principal relation for Dn(2, 1, 4, 6, 3), we need a cyclic sequence
as above. For D(2, 1, 4, 6), setting A+ = {1, 2}, B+ = {3}, C+ = {4, 5, 6, 7},
E+ = {8, 9}, and A− = {−1,−2}, C− = {−3,−4,−5,−6}, B− = {−7}, and E− =
{−8,−9}, then we have A+∪B+∪C+∪E+ = X+ and A−∪C−∪B−∪E− = X−.
By applying (3.1), (3.2) and (3.3), we have a cyclic sequence as above. Thus we
have a relation

w = x1x−2x−6x−9x
−1
−8x

−1
−5x−4x

−1
−3x

−1
0 .



On the Polynomial of the Dunwoody (1, 1)-knots 239

Hence the Dunwoody polynomial is

fn
w(t) = t−9(1− t+ t3 − t4 + t5 − t6 + t7 − t9 + t10).

Since M+ = 1 and M− = −9, the relation w on Dn(2, 1, 4, 6, 3) is principal for n >
13, so fn

w(t) is the Alexander polynomial ofK(2, 1, 4, 6) representing the pretzel knot
P (−2, 3, 7), which can be obtained by considering the principal cyclic presentation
of D14(2, 1, 4, 6, 3).

The next corollaries are immediate consequences of the previous considerations.

Corollary 3.6. Let D(a, b, c, r) be the Dunwoody (1, 1)-decomposition of (S3,K).
Suppose that α and β are two permutations defined by Theorem 2.1. Let w(x0, · · · ,
xk) be a relation induced by the cyclic sequence of Dn(a, b, c, r,∓q) for each n > 1,
M+ = max0≤k≤d−1{(βα)k(0)} and M− = min0≤k≤d−1{(βα)k(0)}, where d = 2a+
b + c. Then fn

w(t) is the Alexander polynomial of K if n is the smallest positive
integer n0 such that n0 > M+ −M− + |s|.

Let T (i, j) be the torus knot such that 2 ≤ i ≤ j and j = j̄+ ik for some k ∈ Z.
Let j̄ = ±1, then the following (⋆) is the families of the Dunwoody 3-manifolds and
their branched sets T (i, j), where i ≥ 3 and k ≥ 1. Note that these are different with
the families introduced in [4]. As applications of Theorem 3.5, for the Dunwoody
(1, 1)-knots representing T (k1, k2) satisfying k2 ≡ ±1 mod k1 as

T (i, ki+ 1) ↔ Dn(1, i− 2, (i− 1) + (k − 1)(2i− 2), (i− 1) + (k − 1)(2i− 2), i)

T (i, (k + 1)i− 1) ↔ Dn(1, i− 2, (3i− 5) + (k − 1)(2i− 2), 3i− 4,−i) (⋆)

and k2 ≡ ±2 mod k1 as (2.1) or (2.2), we show their Alexander polynomial and
certain invariant. In our case Corollary 3.3 can be modified as follows.

Corollary 3.7. Let K = K(a, b, c, r) be the Dunwoody (1, 1)-knot as in (⋆) and
n > 1. Then fn

w(t)
.
= △K(t) if n > M+ − M− + |s|, where .

= means equal up to
units.

For the Dunwoody (1, 1)-knots satisfying (2.1) or (2.2), we have the following.

Corollay 3.8. Let K = K(a, b, c, r) be the Dunwoody (1, 1)-knot representing
T (k1, k2) with k2 ≡ ±2 mod k1 as in (2.1) or (2.2). Then fn

w(t)
.
= △K(t) if

n > M+ −M− + |s|, where .
= means equal up to units.

We suppose that K(a, b, c, r) is the Dunwoody (1, 1)-knot representing T (k1, k2)
satisfying k2 ≡ ±1 or ±2 mod k1 as (⋆) or (2.1) and (2.2). Then the following shows
that d = 2a+ b+ c is an invariant for K(a, b, c, r).
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Theorem 3.9. Let T (k1, k2) be the torus knot with k2 ≡ ±2 mod k1 as in (2.1) or
(2.2). Then d is an invariant of T (k1, k2), where

d =

{
k1 +

(k2
1−1)(k2−2)

2k1
if k2 ≡ 2 mod k1

k1 +
k2
1(k2−2)−(k2+2)

2k1
if k2 ≡ −2 mod k1

.

Proof. We suppose that T (k1, k2) be the torus knot with k2 ≡ ±2 mod k1. Then
the Dunwoody 3-manifold represented by Dn(a, b, c, r, s) satisfies (2.1) or (2.2). Let
n > M+−M−+ |s|. On Dn(a, b, c, r, s), we have a principal relation w from a cyclic
sequence by applying (3.1), (3.2) and (3.3). Thus the Dunwoody polynomial fw(t)
of degree M+ − M− is the Alexander polynomial of T (k1, k2), and M+ − M− =
(k1 − 1)(k2 − 1). Since the length of w is d, the number of terms of △(k1, k2) is
d = 2a+ b+ c. Therefore d is an invariant of T (k1, k2). 2

For (⋆), the similar argument can be applied as the following.

Corollary 3.10. Let T (i, j) be the torus knot with 3 ≤ i ≤ j and j = ki ± 1 for
some k ≥ 1 in Z. Then d is an invariant of T (i, j), where

d =

{
(2i− 1) + (k − 1)(2i− 2) if j = ki+ 1
(4i− 5) + (k − 1)(2i− 2) if j = ki− 1

.

We recall that if △n
K(t) ∈ Z[t]/(tn − 1) is the projection of the Alexander

polynomial ofK = K(a, b, c, r), then there is a connection between fn
w(t) and△n

K(t),
which follows from the result of Theorem 4.1 in [3].

Corollary 3.11. Let K = K(a, b, c, r) be a (1, 1)-knot in the lens space L(p, q′) and
H1(L(p, q

′) − K) = Z ⊕ Zd̄, where d̄ = gcd(p, q). Then for each n > 1 such that
gcd(n, p) = 1, we have

fn
w(t

p/d̄) = △n
K(t) · (t

p/d̄ − 1)

(t− 1)

up to units of Z[t]/(tn − 1).

In Corollary 3.11, the cyclotomic polynomial

(tp/d̄ − 1)

(t− 1)
= 1 + t+ t2 + · · ·+ tp/d̄−1

is irreducible polynomial if p/d̄ is prime. Let n > 1 and gcd(p, n) = 1. Then
the following example explains one way to obtain the Alexander polynomial of
K(a, b, c, r) in L(p, q′) from the Dunwoody polynomial on Dn(a, b, c, r, s) with ps+
q ≡ 0 mod n.

Example 5. Let D(1, 5, 0, 6) be a (1, 1)-decomposition with p = 5 and q = 7 and
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K = K(1, 5, 0, 6) a (1, 1)-knot in the lens space L(5, 1). Then there is a unique
s ∈ Z12 such that 5s + 7 ≡ 0 mod 12. On D12(1, 5, 0, 6, 1) we have a principal
relation

w = x0x
−1
1 x2x4x6x8x10

induced by a cyclic sequence as follow:

(0, 1)
α−→ (1, 7)

↙β

(1̄, −1)
α−→ (2̄, −7)

↙β

(2, 6)
α−→ (4̄, −6)

↙β

(4, 5)
α−→ (6̄, −5)

↙β

(6, 4)
α−→ (8̄, −4)

↙β

(8, 3)
α−→ (1̄0, −3)

↙β

(10, 2)
α−→ (1̄2, −2)

↙β

(12, 1).

Thus we obtain the Dunwoody polynomial

f12
w (t)

.
= 1 + t2 + t4 + t6 + t8 + t10 − t−1

.
= 1 + t2 + t4 + t6 + t8 + t10 − t11.

By Corollary 3.11, putting tp/d̄ = t5, we have

f12
w (t5)

.
= 1 + t10 + t20 + t30 + t40 + t50 − t55

.
= t−10(1 + t4 − t5 + t6 + t2 + t8 + t10)

= (1− t+ t2 − t3 + t4 − t5 + t6)

·(1 + t+ t2 + t3 + t4)

= (1− t+ t2 − t3 + t4 − t5 + t6)
(t5 − 1)

(t− 1)
.

and so △12
K = 1 − t + t2 − t3 + t4 − t5 + t6 is the Alexander polynomial of the

(1, 1)-knot K(1, 5, 0, 6), where the multiplication for t10 requires condition n > 10.

Indeed we have the same result from D22(1, 5, 0, 6, 3). However the Dunwoody
polynomial induced byD7(1, 5, 0, 6, 0) does not give the Alexander polynomial of the
(1, 1)-knot K(1, 5, 0, 6) because of 7 < 10. In other words, the Dunwoody polyno-
mial induced by D7(1, 5, 0, 6, 0) is not the Alexander polynomial of the (1, 1)-knot
K(1, 5, 0, 6). From this example, we may have the possibility that the Alexander



242 Soo Hwan Kim and Yangkok Kim

polynomial of the Dunwoody (1, 1)-knot in a lens space can be obtained from the
Dunwoody polynomial.
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