On the Polynomial of the Dunwoody (1, 1)-knots

Soo Hwan Kim and Yangkok Kim*
Department of Mathematics, Dongeui University, Pusan 614-714, Korea
e-mail: sootopology@hanmail.net and ykkim@deu.ac.kr

Abstract. There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]). We study the polynomial(called the Dunwoody polynomial) for the (1,1)-knot obtained by the certain cyclically presented group of the Dunwoody 3-manifold. We prove that the Dunwoody polynomial of $(1,1)$-knot in \mathbb{S}^{3} is to be the Alexander polynomial under the certain condition. Then we find an invariant for the certain class of torus knots and all 2-bridge knots by means of the Dunwoody polynomial.

1. Introduction

We begin with the fact that every closed 3 -manifold has a spine called the Heegaard diagram, from which one can obtain the presentation for the group; however, not all group presentations arise from the spines of 3 -manifolds. Therefore, determining which cyclic presentations of groups correspond to spines of closed 3 -manifolds is an open problem.

In 1968, L. Neuwirth introduced an algorithm for the construction of a connected closed orientable 3-manifold from 2-complex, which corresponds to a group presentation([17]). In 1994, M. J. Dunwoody introduced the 6 -tuples yielding a family of genus n Heegaard diagrams of closed orientable 3-manifolds called the Dunwoody 3 -manifold ([10]). In 2000, author in [19] first proposed that the branched set in the quotient space of the Dunwoody 3-manifold is a (1,1)-knot in \mathbb{S}^{3}. In other words, at least one cyclic symmetry on the Dunwoody 3-manifold induces a $(1,1)$-knot. In 2004, it was shown that some classes of knots represented by the Dunwoody 3-manifolds contain all $(1,1)$-knots in $\mathbb{S}^{3}([5])$.

Conversely, for a given $(1,1)$-knot K, it is an interesting problem to determine a type of the Dunwoody 3-manifold representing K even if it is not unique. Until

[^0]now these problems for all 2-bridge knots and some torus knots were solved in [11], [14] and [19]. For example, the explicit type for the torus knot $T(p, q)$ satisfying $q \equiv \pm 1 \bmod p$ has been obtained in [1] and [5], and for the torus knot $T(p, q)$ satisfying $q \equiv \pm 2 \bmod p$, the type has been obtained in [13]. Furthermore, in [6], it has been obtained for all torus knots with bridge number at most three. However to determining types of Dunwoody 3 -manifolds for all torus knots is still unknown.

The Dunwoody 3-manifold plays an important role in determining which cyclically presented group corresponds to a 3 -manifold. Indeed, in order to study a 3 -manifold with some particular group as the fundamental group, the Dunwoody 3-manifold has a Heegaard diagram from which one can obtain a presentation for the group. Thus, to find the Dunwoody 3 -manifold, one must seek a cyclically presented group associated with a 3 -manifold. Furthermore, as in [12], the branched covering space of the spatial Θ-curve containing $(1,1)$-knots as the constituent knots is related to the Dunwoody 3-manifold. Therefore the concept of the Dunwoody 3 -manifold is important in knot, branched covering and graph theories.

In section 2 , we introduce a set of 4 -tuples representing all $(1,1)$-knots , which is determined by two permutations, and so 3 -manifolds related to a set of 4 -tuples are containing the Dunwoody 3 -manifolds. In particular, we prove that the stronglycyclic branched covering space of the Dunwoody (1,1)-knot represented by the certain 4 -tuples is homeomorphic to the Dunwoody 3-manifold. Moreover we show some conditions of the Dunwoody $(1,1)$-knot representing a torus knot; and we also discuss about the type of the Dunwoody 3-manifold representing the torus knot.

In Section 3, we show that the fundamental group of the Dunwoody 3-manifold admits a cyclic presentation, which is independent of results in [4] and [16]; and we define the Dunwoody polynomial from the cyclic presentation. As the main result, we show that the Dunwoody polynomial for the Dunwoody $(1,1)$-knot in \mathbb{S}^{3} is the Alexander polynomial under some condition. For the results in [3] and [4], they are shown the connection between the Dunwoody polynomial and the projection of Alexander polynomial into $\mathbb{Z}[t] /\left(t^{n}-1\right)$ for some $n>1$. Moreover we show that a certain numerical number from the Dunwoody polynomial is an invariant for some torus knots and all 2-bridge knots of $(1,1)$-knots. This result gives an answer to a question in [10]. In this note, all lens spaces will be assumed to include \mathbb{S}^{3} but not $\mathbb{S}^{1} \times \mathbb{S}^{2}$. The basic facts about lens spaces are covered in [18].

2. On the Dunwoody $(1,1)$-knots

Let $\left(V_{1}, V_{2}\right)$ be a Heegaard splitting with genus n of a closed orientable 3manifold M. A properly embedded disc D in the handlebody V_{2} is called a meridian disc of V_{2} if cutting V_{2} along D yields a handlebody of genus $n-1$. A collection of n mutually disjoint meridian discs $\left\{D_{i}\right\}$ of V_{2} is called a complete system of meridian discs of V_{2} if cutting V_{2} along $\cup_{i} D_{i}$ gives a 3 -ball. Let c_{i} denote the 1 -sphere ∂D_{i} which lies in the closed orientable surface $\partial V_{1}=\partial V_{2}$ of genus n. Then the system is
said to be a Heegaard diagram of M denoted by $\left(V_{1} ; c_{1}, c_{2}, \cdots, c_{n}\right)$. Let M be a lens space and K be a knot in M. Then the pair (M, K) admits a (1,1)-decomposition if there exists a Heegaard splitting of genus one $\left(V_{1}, K_{1}\right) \cup_{\phi}\left(V_{2}, K_{2}\right)$ of (M, K) such that $\left(V_{1} ; c_{1}\right)$ is a Heegaard diagram of M, and $K_{1} \subset V_{1}$ and $K_{2} \subset V_{2}$ are properly embedded trivial arcs, where ϕ is an attaching homeomorphism.

We now introduce the Dunwoody (1,1)-decomposition of (M, K) determined by two permutations and 4-tuples (a, b, c, r), where $a>0, b \geq 0, c \geq 0, r \in \mathbb{Z}_{d}$, and $d=2 a+b+c$. Let m^{+}and m^{-}be two circles with each other different orientations, and let $X^{+}=\{1,2, \cdots, d\}$ and $X^{-}=\{-1,-2, \cdots,-d\}$ be sets of d vertices in m^{+} and m^{-}, respectively. We now define two permutations α and β as below, where all numbers are under $\bmod d$.

$$
\alpha(j)=\left\{\begin{array}{l}
d-j+1 \quad \text { if } \quad 1 \leq j \leq a \\
-j-c \quad \text { if } \quad a+1 \leq j \leq a+b \\
-j+b \quad \text { if } \quad a+b+1 \leq j \leq a+b+c \\
-d-j-1 \quad \text { if } \quad-a \leq j \leq-1
\end{array}\right.
$$

and

$$
\beta(j)=\left\{\begin{array}{l}
-j+r \text { if } r<j \\
-j+r-d \text { otherwise }
\end{array}\right.
$$

The cycle expressions of α and β are the following.

$$
\begin{gathered}
\alpha=(1, d)(2, d-1)(3, d-2) \cdots(a, d-a+1) \\
(a+1,-(a+c+1)) \cdots(a+b,-(a+c+b)) \\
(a+b+1,-(a+1)) \cdots(a+b+c,-(a+c)) \\
(-1,-d)(-2,-(d-1)) \cdots(-a,-(d-a+1))(*)
\end{gathered}
$$

and

$$
\begin{gathered}
\beta=(1,-(1-r))(2,-(2-r)) \cdots(j,-(j-r)) \\
\cdots(d,-(d-r)) . \quad(* *)
\end{gathered}
$$

We note that each 2-cycle in α consists of the end points of a curve connecting m^{+}and m^{-}or themselves as the rule of Figure 1 ; and each 2-cycles in β generates a meridian disk m, by gluing the corresponding points in m^{+}and m^{-}via β. For example, $(r,-(r-r))$ means that the number r of m^{+}is identified with the number $-(r-r)=-0=-d$ in m^{-}. Thus $\beta \alpha$ determines the genus one solid torus V_{1} and the disjoint simple closed curves on ∂V_{1}.

Theorem 2.1. If L is the number of the disjoint simple closed curves on ∂V_{1}, then there are two permutations α and β such that $|\alpha|-|\beta|+2 L=|\beta \alpha|$, where $|\cdot|$ means the number of disjoint cycles in a permutation.
Proof. Let $d=2 a+b+c$. Let $X^{+}=\{1,2, \cdots, d\}$ and $X^{-}=\{-d,-d+1, \cdots,-1\}$ be sets of d points in m^{+}and m^{-}, respectively. Then the permutation α is consisting of

Figure 1: The Dunwoody (1, 1)-decomposition $D(a, b, c, r)$
$d 2$-cycles by two end points of line segments connecting m^{+}and m^{-}or themselves on ∂V_{1}, and the permutation β is consisting of $d 2$-cycles connecting m^{+}and m^{-} on ∂V_{1}. We now define an equivalence relation on $X=X^{+} \cup X^{-}$by

$$
x \sim y \text { if } y=(\beta \alpha)^{i}(x) \text { or } y=\alpha(\beta \alpha)^{i}(x) \text { for some } i
$$

Then we call the equivalence classes of X under the relation the orbits of $\beta \alpha$. Let l be a simple closed curve on ∂V_{1} and x be a point on m^{+}meeting l. Then l is determined by the repeated applications of α and β as follows;

$$
x, \alpha(x), \beta \alpha(x), \alpha \beta \alpha(x), \ldots, \alpha \beta \cdots \alpha(x),
$$

which forms an orbit of $\beta \alpha$. Each orbit of $\beta \alpha$ determines a simple closed curve in ∂V_{1}. Let Y_{1}, \ldots, Y_{L} be orbits of $\beta \alpha$. If $x \in Y_{i}$ and d is the smallest positive integer such that $(\alpha \beta)^{d}(x)=x$, then on $Y_{i}, \beta \alpha$ is expressed as a product $\beta_{i} \alpha_{i}$ of two disjoint permutations α_{i} and β_{i} of the same length:

$$
\alpha_{i}=\left(x, \beta \alpha(x),(\beta \alpha)^{2}(x), \ldots,(\beta \alpha)^{d-1}(x)\right)
$$

and

$$
\beta_{i}=\left(\alpha(x), \alpha \beta \alpha(x), \ldots,(\alpha \beta)^{d-1} \alpha(x)\right)
$$

Furthermore the $\beta_{i} \alpha_{i}$ are pairwise disjoint and

$$
\beta \alpha=\left(\beta_{L} \alpha_{L}\right) \cdots\left(\beta_{2} \alpha_{2}\right)\left(\beta_{1} \alpha_{1}\right)
$$

Moreover

$$
|\beta \alpha|=\left|\beta_{L} \alpha_{L}\right|+\cdots+\left|\beta_{1} \alpha_{1}\right|=2 L .
$$

Since two consecutive cycles in $\beta \alpha$ determine a simple closed curve (which is isotopic to $c_{1}=\partial D_{1}$) on ∂V_{1}, we assume that l is the simple closed curve determined by α and β on ∂V_{1} whenever $L=1$. Let K_{1} be a trivial arc in V_{1} such that $K_{1} \cap \partial V_{1}=\partial K_{1}$, which is situated inside the bigons bounded by 2-cycles ($1, d$) and $(-1,-d)$ as shown in Figure 1. Then a set of 4-tuples of integers

$$
\mathcal{D}=\{(a, b, c, r) \mid a>0, b \geq 0, c \geq 0,
$$

$$
\left.d=2 a+b+c, r \in \mathbb{Z}_{d},|\alpha \beta|=2\right\}
$$

admits a $(1,1)$-decomposition of (M, K) called the Dunwoody $(1,1)$-decomposition. For each (a, b, c, r) in \mathcal{D}, we denote the Dunwoody (1,1)-decomposition of (M, K) by $D(a, b, c, r)$. (See Figure 1.) Moreover, we denote a (1,1)-knot K represented by $D(a, b, c, r)$ by $K(a, b, c, r)$, and call it the Dunwoody $(1,1)$-knot. We note that every $(1,1)$-knot can be represented by the Dunwoody $(1,1)$-knot and vice versa([5]). The representation of a $(1,1)$-knot by Dunwoody $(1,1)$-decomposition is not unique. For example, both $K(1,3,4,7)$ and $K(2,1,4,4)$ represent the pretzel knot $P(-2,3,7)$ which is a $(1,1)$-knot as was mentioned in [19]. The subset of \mathcal{D} representing all 2-bridge knots was determined by [11], [14] and [19]. However, the subset of \mathcal{D} representing all torus knots is not yet determined completely. In [1], [5], [13] and [6] we have Dunwoody $(1,1)$-decompositions representing the certain class of torus knots.

We now construct a family of 3 -manifolds which are the n-fold strongly-cyclic coverings branched over Dunwoody (1,1)-knots. Let M be a lens space and K be a Dunwoody $(1,1)$-knot in M. Then the n-fold cyclic covering of M branched over K is completely defined by an epimorphism $C: H_{1}(M-K) \rightarrow \mathbb{Z}_{n}$, where \mathbb{Z}_{n} is the cyclic group of order n. Let r_{1} be a generator of ∂V_{1}, which is the boundary of the meridian disk meeting with K_{1} at one point and let r_{2} be a generator of ∂V_{1}, which is the longitude curve meeting with r_{1} at one point. Then every curve of ∂V_{1} determined by two permutations α and β is generated by r_{1} and r_{2}. In other words, the orbit l of $\beta \alpha$ is generated by r_{1} and r_{2}. We define $l_{i}(1 \leq i \leq 6)$ from the oriented curve l on $D(a, b, c, r)$ as follows.

- l_{1} is the number of left directed arrows from m^{+}or m^{-}to m^{+}or m^{-}in a edges respectively.
- l_{2} is the number of right directed arrows from m^{+}or m^{-}to m^{+}or m^{-}in a edges respectively.
- l_{3} is the number of arrows directed from m^{+}to m^{-}in b edges.
- l_{4} is the number of arrows directed from m^{-}to m^{+}in b edges.
- l_{5} is the number of arrows directed from m^{+}to m^{-}in c edges.
- l_{6} is the number of arrows directed from m^{-}to m^{+}in c edges.

From now on for $D(a, b, c, r)$ we let $p=\left(l_{3}+l_{5}\right)-\left(l_{4}+l_{6}\right), q=\left(l_{1}+l_{3}\right)-\left(l_{2}+l_{4}\right)$ and $d=2 a+b+c$. If $p= \pm 1$ or $p=0$, then M is \mathbb{S}^{3} or $\mathbb{S}^{1} \times \mathbb{S}^{2}([11]$ and [12]), respectively. Thus $p \neq 0$ if M is not $\mathbb{S}^{1} \times \mathbb{S}^{2}$. We have $\pi(M)=\left\langle x \mid x^{ \pm p}\right\rangle=\mathbb{Z}_{|p|}$ and $H_{1}(M-K)=\left\langle r_{1}, r_{2} \mid p r_{2}+q r_{1}\right\rangle=\mathbb{Z} \oplus \mathbb{Z}_{g c d(p, q)}$. By definition, the n-fold cyclic covering f of M branched over K is called strongly-cyclic if the branching index of K is n. That is, the fiber $f^{-1}(x)$ of each point $x \in K$ contains a single point. Therefore the homology class of a meridean loop r_{1} around K is mapped by C in a generator of \mathbb{Z}_{n}, say $C\left(r_{1}\right)=1$, and so there exists an n-fold strongly-cyclic
covering space \bar{M} of M branched over K if and only if there is $s=C\left(r_{2}\right) \in \mathbb{Z}_{n}$ such that $p s+q \equiv 0 \bmod n$. We call the diagram in Figure 2 a Heegaard diagram of \bar{M} and denote it by $D_{n}(a, b, c, r, s)$. If the Dunwoody $(1,1)$-knot K is in \mathbb{S}^{3}, the

Figure 2: A Heegaard diagram $D_{n}(a, b, c, r, s)$
strongly-cyclic branched covering is the same that cyclic branched covering. Indeed the n-fold cyclic branched covering of K in \mathbb{S}^{3} always exists and is unique up to equivalence for $n>1$ because $H_{1}\left(\mathbb{S}^{3}-K\right)=\mathbb{Z}$, the homology class r_{1} is mapped by C in a generator of \mathbb{Z}_{n} and $s=C\left(r_{2}\right)=-q$.

We have proved the following.
Theorem 2.2. Let $D(a, b, c, r)$ be the Dunwoody (1,1)-decomposition of (M, K) and $n>1$. Then \bar{M} is homeomorphic to a 3-manifold if and only if there is an integer s such that $p s+q \equiv 0 \bmod n$.

We notice that $D_{n}(a, b, c, r, s)$ satisfies the conditions for the Heegaard diagram of the Dunwoody 3 -manifold considered in [10]. Thus we have the following.

Corollary 2.3. Let M be a lens space and K be a Dunwoody $(1,1)$-knot in M. Then the n-fold strongly-cyclic covering space \bar{M} of M branched over K is homeomorphic to the Dunwoody 3-manifold.

Corollary 2.4. [12] $D(a, b, c, r)$ is the $(1,1)$-decomposition of $\left(\mathbb{S}^{3}, K\right)$ if and only if $|p|=1$.

From the result of Corollary, if $d=2 a+b+c$ is even, then $D(a, b, c, r)$ cannot be a $(1,1)$-decomposition of $\left(\mathbb{S}^{3}, K\right)$ because d has the same parity of p. (See [15] for detail.)

Generally, for the following set

$$
\begin{aligned}
& \mathcal{S}=\{(a, b, c, r) \mid a>0, b \geq 0, c \geq 0, \\
& \left.d=2 a+b+c, r \in \mathbb{Z}_{d},|\alpha \beta|=2 L\right\},
\end{aligned}
$$

we suppose that $L \geq 2$ is the number of simple closed curves determined by α and β on ∂V_{1}. Given an $(a, b, c, r) \in \mathcal{S}$, it is possible to represent a link in lens spaces containing \mathbb{S}^{3} and $\mathbb{S}^{1} \times \mathbb{S}^{2}$. Thus the orientable 3-manifold \bar{M} in existing is a generalization of the Dunwoody 3-manifold introduced in [10], called the generalized Dunwoody 3-manifold. (See [15],[13] or [7] for some examples.)

We let $L=1$. That is, for each $(a, b, c, r) \in \mathcal{D}, K(a, b, c, r)$ is the Dunwoody $(1,1)$-knot in a lens space or \mathbb{S}^{3}. We now consider the Dunwoody $(1,1)$-knot representing the torus knot. The torus knot is a knot embedded in the standard torus T in \mathbb{S}^{3}. Regarding T as the boundary of tubular neighborhood of trivial knot in \mathbb{S}^{3}, we take a meridian-longitude system $\left(m_{1}, m_{2}\right)$ of trivial knot on T. The torus knot is said to be of type (k_{1}, k_{2}), denoted by $T\left(k_{1}, k_{2}\right)$, if it is homologous to $k_{1} m_{1}+k_{2} m_{2}$ in T for some coprime integers k_{1} and k_{2}.

The Dunwoody (1,1)-knots representing $T\left(k_{1}, k_{2}\right)$ with $k_{2} \equiv \pm 1 \bmod k_{1}$ have been obtained in [1] and [5]. Moreover, the Dunwoody (1,1)-knots representing the torus knots with bridge number at most three have been obtained in [6]. Furthermore the Dunwoody (1,1)-knots representing $T\left(k_{1}, k_{2}\right)$ with $k_{2} \equiv \pm 2 \bmod k_{1}$ have been obtained in [13] with explicit formulae: (i) $T\left(k_{1}, k_{2}\right)$ with $k_{2} \equiv 2 \bmod k_{1}$ is represented by $K(a, b, c, r)$, where

$$
\left\{\begin{array}{l}
a=\frac{k_{1}-1}{2} \tag{2.1}\\
b=1 \\
c=\frac{\left(k_{1}+1\right)\left(k_{1}-1\right)\left(k_{2}-2\right)}{2 k_{1}} \\
r=\frac{-k_{1}+\left(k_{1}\right)^{2} k_{2}-k_{2}+2-\left(k_{1}\right)^{3}}{2 k_{1}}
\end{array}\right.
$$

and (ii) $T\left(k_{1}, k_{2}\right)$ with $k_{2} \equiv-2 \bmod k_{1}$ is represented by $K(a, b, c, r)$ where

$$
\left\{\begin{array}{l}
a=\frac{k_{1}-1}{2} \tag{2.2}\\
b=1 \\
c=\frac{\left(k_{1}\right)^{2} k_{2}-2\left(k_{1}\right)^{2}-k_{2}-2}{2 k_{1}} \\
r=\frac{1}{2}\left(k_{1}\right)^{2}-\frac{3}{2}
\end{array}\right.
$$

In the following theorem the conditions for $K(a, b, c, r)$ to represent a torus knot will be given where $\left|X_{1} \cap X_{2}\right|$ means the number of intersecting points between two sets X_{1} and X_{2}.

Theorem 2.5. Let $D(a, b, c, r)$ be the Dunwoody $(1,1)$-decomposition of $\left(\mathbb{S}^{3}, K\right)$. Suppose that m is the meridian disk determined by β and l is the simple closed curve defined by $\beta \alpha$ such that $\left|K_{1} \cap K_{2}\right|=2,\left|K_{1} \cap l\right|=k_{1}$, and $\left|K_{2} \cap m\right|=k_{2}$, for some coprime integers k_{1} and k_{2}. Then $K(a, b, c, r)$ is $T\left(k_{1}, k_{2}\right)$, where $k_{1}=2 a+b$ and $k_{2} \leq c+2$.
Proof. There exists a Heegaard splitting of genus one $\left(V_{1}, K_{1}\right) \cup_{\phi}\left(V_{2}, K_{2}\right)$ of $\left(\mathbb{S}^{3}, K\right)$,
where V_{1} and V_{2} are solid tori, $K_{1} \subset V_{1}$ and $K_{2} \subset V_{2}$ are properly embedded trivial arcs, and $\phi:\left(\partial V_{2}, \partial K_{2}\right) \rightarrow\left(\partial V_{1}, \partial K_{1}\right)$ is an attaching homeomorphism. Since $\left|K_{1} \cap K_{2}\right|=2, K_{1}$ and K_{2} do not meet each other except the bigons determined by the 2 -cycles $(1, d)$ and $(-1,-d)$. Thus the meridian-longitude system (m, l) satisfies $\left|K_{1} \cap l\right|=2 a+b$ and $\left|K_{2} \cap m\right| \leq c+2$. Let $k_{1}=2 a+b$ and $k_{2}=\left|K_{2} \cap m\right|$ be integers satisfying $\operatorname{gcd}\left(k_{1}, k_{2}\right)=1$. Then $K=K_{1} \cup_{\phi} K_{2}$ is homologous to $k_{1} m+k_{2} l$ in V_{1}. Therefore $K(a, b, c, r)$ is $T\left(k_{1}, k_{2}\right)$.

The inequality $k_{2} \leq c+2$ in Theorem 2.5 is the generalization of Theorem 4.2 (iii) in [8]. That is, $K(1,0,2 k-1,2)$ is equivalent to $T(2 k+1,2)$. We also note that the Dunwoody (1,1) -decomposition $D(a, b, c, r)$ representing $T\left(k_{1}, k_{2}\right)$ with $k_{2} \equiv \pm 2 \bmod k_{1}$ satisfies the conditions in Theorem 2.5.

Example 1. Let $D(1,2,3,3)$ be a $(1,1)$-decomposition of $\left(\mathbb{S}^{3}, K\right)=\left(V_{1}, K_{1}\right) \cup_{\phi}$ $\left(V_{2}, K_{2}\right)$ and $\left|\left(l_{3}+l_{5}\right)-\left(l_{4}+l_{6}\right)\right|=1$. (See Figure 3.) Then $\left|K_{1} \cap l\right|=4,\left|K_{2} \cap m\right|=$ 5 , and $\left|K_{1} \cap K_{2}\right|=2$, which are marked by circled numbers, numbers and dots respectively in Figure 3. Thus $D(1,2,3,3)$ satisfies the conditions of Theorem 2.5 and so $K(1,2,3,3)$ is $T(4,5)$.

Figure 3: A $(1,1)$-decomposition $D(1,2,3,3)$ of $T(4,5)$

3. The Alexander polynomial vs the Dunwoody polynomial

In this section, we show that (i) the certain polynomial of the Dunwoody $(1,1)$ knot in \mathbb{S}^{3} is the Alexander polynomial, and that (ii) if $K(a, b, c, r)$ is the Dunwoody $(1,1)$-knot representing 2 -bridge knot or some torus knots, then the number $d=$ $2 a+b+c$ is an invariant for $K(a, b, c, r)$. For the Dunwoody polynomial, (i) gives an answer to a question in [10].

Theorem 3.1. The n-fold strongly-cyclic branched covering of the Dunwoody $(1,1)$ knot in a lens space admits a cyclically presented fundamental group.
Proof. When we consider the Dunwoody (1,1)-knot $K(a, b, c, r)$ in a lens space, $\beta \alpha$ has two cycles of length d such that $(\beta \alpha)^{d}(x)=x$ for each x on $D(a, b, c, r)$ by Theorem 2.1. Thus the n-fold strongly-cyclic branched covering of $K(a, b, c, r)$ is homeomorphic to the Dunwoody 3-manifold $D_{n}(a, b, c, r, s)$. Since $p s+q \equiv 0 \bmod n$,
the path corresponding to this cycle connects the endpoint labelled 1 in the hole labelled 0 to the endpoint labelled 1 in the hole labelled $\overline{p s+q}$ under $\bmod n$. That is, the condition $p s+q \equiv 0 \bmod n$ ensures that the path corresponding to the cycles is a simple closed curve with an orientation. Since $D_{n}(a, b, c, r, s)$ has n simple closed curves, each path starting at the endpoint labelled 1 in the hole labelled i corresponding to the cycles of $\beta \alpha$ will be connected to the endpoint labelled 1 in the hole labelled \bar{i} under $\bmod n$. With notations in [13], $w\left(C_{i}\right)$ (resp. $\left.w\left(\bar{C}_{i}\right)\right)$ is a cyclic presentation obtained by reading off simple closed curves around the hole labelled i (resp. \bar{i}). Thus the identification of C_{i} and \bar{C}_{i} by r on $D_{n}(a, b, c, r, s)$ induces $w\left(C_{i}\right) \approx_{r} w\left(\bar{C}_{i}\right)$. If $i=0$, then

$$
u \eta^{s}(c) \eta^{s-1}(b) \eta^{-1}\left(u^{-1}\right) \approx_{r} a b c \eta^{-1}\left(a^{-1}\right),
$$

from which we have a cyclic presentation for the fundamental group.
For the specific example, let the Dunwoody (1, 1)-knot $K(a, b, c, r)$ represent $T(p, q)$ such that p is odd and $q \equiv \pm 2 \bmod p$. Then the n-fold cyclic covering of \mathbb{S}^{3} branched over $K(a, b, c, r)$ satisfies $u \eta^{s}(c) \eta^{s-1}(b) \eta^{-1}\left(u^{-1}\right) \approx_{r} a b c \eta^{-1}\left(a^{-1}\right)$ (for reference see [13]), where the parameter s is equal to $-s$ in [13].

From [3], [9] and [20], we recall the definition of the Alexander polynomial of a knot in compact connected 3 -manifold. We also note that every finitely generated abelian group G is a direct sum of a torsion-free part $F(G)$ and a torsion-part $T(G)$. For the group G, we denote its integral group ring by $\mathbb{Z}[G]$. In particular, the first homology group $H_{1}(N)$ of a compact connected 3-manifold N has a decomposition

$$
H_{1}(N) \cong F\left(H_{1}(N)\right) \oplus T\left(H_{1}(N)\right)
$$

The projection $J: H_{1}(N) \rightarrow H_{1}(N) / T\left(H_{1}(N)\right)$ induces the ring homomorphism $J^{\prime}: \mathbb{Z}\left[H_{1}(N)\right] \rightarrow \mathbb{Z}\left[H_{1}(N) / T\left(H_{1}(N)\right)\right]$. If k is the first Betti number of N and t_{1}, \cdots, t_{k} are generators of $H_{1}(N) / T\left(H_{1}(N)\right)$, then we have

$$
\mathbb{Z}\left[H_{1}(N) / T\left(H_{1}(N)\right)\right] \cong \mathbb{Z}\left[t_{1}, t_{1}^{-1}, \cdots, t_{k}, t_{k}^{-1}\right]
$$

Let $h: \pi_{1}(N, *) \rightarrow H_{1}(N)$ be the Hurewitz homomorphism, where $*$ is a fixed point in N. Denote $E_{1}(N) \subset \mathbb{Z}\left[H_{1}(N)\right]$ and $E_{1}^{\prime}(N)$ with the first elementary ideal of $\pi_{1}(N, *)$ and the smallest principal ideal of $\mathbb{Z}\left[H_{1}(N) / T\left(H_{1}(N)\right)\right]$ containing $J^{\prime}\left(E_{1}(N)\right)$, respectively. The generator \triangle_{N} of $E_{1}^{\prime}(N)$ is well-defined up to multiplication by units of $\mathbb{Z}\left[t_{1}, t_{1}^{-1}, \cdots, t_{k}, t_{k}^{-1}\right]$ and is said to be the Alexander polynomial of N. Let K be a knot in a compact connected 3-manifold M. Then the Alexander polynomial \triangle_{N} of $N=M-K$ is the Alexander polynomial of K and it will be denoted by \triangle_{K} instead of \triangle_{N} for a knot K.

Let R be a unital commutative ring and let

$$
G_{n} \cong<x_{0}, x_{1}, \cdots, x_{n-1} \mid r_{0}, \cdots, r_{n-1}>
$$

be a finitely-presented R-module, where each relation r_{i} is a linear combination of the generators $x_{j}: r_{i}=a_{i 0} x_{0}+\cdots+a_{i(n-1)} x_{n-1}$. In other words, G_{n} is generated as an R module by the elements x_{0}, \cdots, x_{n-1}, and $r_{0}=0, \cdots, r_{n-1}=0$ are relations among the x_{i} 's. Then we can define a presentation matrix to be an $n \times n$ matrix with entries $a_{i j}$ for $0 \leq i \leq n-1,0 \leq j \leq n-1$. An Alexander matrix is a presentation matrix for $H_{1}(\tilde{X})$ as a $\mathbb{Z}\left[t, t^{-1}\right]$ module, where \tilde{X} is the infinite cyclic cover of the knot complement N. The ideal generated by the Alexander matrix is the Alexander ideal of the knot, so the Alexander ideal is principal([18], P.207). Any generator of this principal ideal is the Alexander polynomial \triangle_{K} for a knot K. In fact, it was discovered by Alexander [2] in the 1920s, early in the history of topology, using the homology of the infinite cyclic cover of a knot complement.

In this section, let M be a lens space and denoted by $L\left(p, q^{\prime}\right)$, where p and q^{\prime} are relatively prime. Considering the Dunwoody (1,1)-knot K in M, we have $F\left(H_{1}(N)\right) \cong \mathbb{Z}$ and $T\left(H_{1}(N)\right) \cong \mathbb{Z}_{g c d(p, q)}$. Thus $\triangle_{K}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is the Alexander polynomial of K. In particular, for K in $\mathbb{S}^{3}, \triangle_{K}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ has the properties (i) $\triangle_{K}(t)=\triangle_{K}\left(t^{-1}\right)$ and (ii) $\triangle_{K}(1)= \pm 1$. Vice verse, every polynomial in $\mathbb{Z}\left[t, t^{-1}\right]$ satisfying (i) and (ii) is the Alexander polynomial of a knot in \mathbb{S}^{3} ([9]). However, by Theorem B in [20], for the Alexander polynomial of K in M, it is true for the condition (i), but the condition (ii) is no longer true. See also [21].

Now we introduce the Dunwoody polynomial of the Dunwoody $(1,1)$-knot $K=$ $K(a, b, c, r)$, and study the connections between the Dunwoody polynomial and the Alexander polynomial for K. Let $n>1$. Then the n-fold strongly-cyclic branched covering $D_{n}(a, b, c, r, s)$ of K in M admits a cyclically presented fundamental group by Corollary 2.3 and Theorem 3.1. Due to the cyclic symmetry of $D_{n}(a, b, c, r, s)$, the fundamental group has the cyclic presentation induced by a single word $w\left(x_{0}\right.$, $\left.x_{1}, \cdots, x_{n-1}\right)$ as following:

$$
\begin{gathered}
G_{n}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right)=\left\langle x_{0}, x_{1}, \cdots, x_{n-1}\right| \\
\left.\theta^{j}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right), 0 \leq j \leq n-1\right\rangle
\end{gathered}
$$

where θ is the automorphism on the free group $F_{n}=\left\langle x_{0}, \cdots, x_{n-1}\right\rangle$ of rank n defined by $\theta\left(x_{i}\right)=x_{i+1}$ and all indices are taken under $\bmod n$. Since θ is an automorphism of order n, the relations

$$
\left\{\theta^{j}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right) \mid 0 \leq j \leq n-1\right\}
$$

are independent of j with $0 \leq j \leq n-1$, that is, for any $0 \leq j \leq n-1$,

$$
\begin{gathered}
G_{n}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right) \cong \\
G_{n}\left(\theta^{j}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right)\right)
\end{gathered}
$$

The relations $\theta^{j}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right), 0 \leq j \leq n-1$, are determined by n disjoint simple closed curves on $D_{n}(a, b, c, r, s)$. For a relation $w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in$
$\left\{\theta^{j}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right) \mid 0 \leq j \leq n-1\right\}$, the relation $w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ is said to be principal if all indices in $w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ are independent of n. For the cyclic presentation $G_{n}\left(w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right)$ by $w\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$, we obtain the abelianized word $\sum_{i=0}^{k} a_{i} \bar{x}_{i},\left(a_{i} \in \mathbb{Z}\right)$, of w and a polynomial $f_{w}^{n}(t)=\sum_{i=0}^{k} a_{i} t^{i} \in$ $\mathbb{Z}\left[t, t^{-1}\right]$ obtained by substituting t^{i} into \bar{x}_{i} is called the Dunwoody polynomial determined by $D_{n}(a, b, c, r, s)$. Moreover, by the multiplications of $\pm t^{j}(j \in \mathbb{Z})$, we can normalize $f_{w}^{n}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ in order to have the polynomial with a positive constant term and positive exponents in $\mathbb{Z}[t]$. Let $f_{w}^{n}(t) \in \mathbb{Z}[t]$ and $n>1$. Then $f_{\theta^{j}(w)}^{n}(t)(0 \leq j \leq n-1)$ are different polynomials in $\mathbb{Z}[t]$, but they are the same in the quotient ring $\mathbb{Z}[t] /\left(t^{n}-1\right)$, up to units. From now on, we will consider the Dunwoody polynomial $f_{w_{k}}^{n}(t)$ as an element of $\mathbb{Z}[t] /\left(t^{n}-1\right)$. For some n, we say that $D_{n}(a, b, c, r, s)$ admits the principal cyclic presentation $G_{n}(w)$ if w is principal.

Example 2. For $n>4, \pi\left(D_{n}(3,1,2,2,-1)\right)$ has a cyclic presentation induced by

$$
w\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}^{-1} x_{3} x_{2}^{-1} x_{2}^{-1} x_{1} x_{0}^{-1}
$$

Thus $\pi\left(D_{n}(3,1,2,2,-1)\right)$ is presented by

$$
\begin{gathered}
\left\langle x_{0}, x_{1}, \cdots, x_{n-1}\right| \theta^{j}\left(x_{1} x_{2} x_{3} x_{4}^{-1} x_{3} x_{2}^{-1} x_{2}^{-1} x_{1} x_{0}^{-1}\right), \\
0 \leq j \leq n-1\rangle .
\end{gathered}
$$

Thus $f_{w}^{n}(t)=1-2 t+t^{2}-2 t^{3}+t^{4}$ is the Dunwoody polynomial determined by $D_{n}(3,1,2,2,-1)$. Since

$$
w\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}^{-1} x_{3} x_{2}^{-1} x_{2}^{-1} x_{1} x_{0}^{-1}
$$

is independent of $n(>4)$, it is a principal relation. Indeed that the Dunwoody $(1,1)$ knot $K(3,1,2,2)$ represents the $\operatorname{knot} 9_{42}$ in the knot table classified by Rolfsen. It is interesting to note that the Dunwoody polynomial $f_{w}^{n}(t)$ for $n>4$ is the Alexander polynomial of 9_{42}.

For the Dunwoody $(1,1)$-knot $K=K(a, b, c, r)$ in \mathbb{S}^{3}, the following shows that $f_{w}^{n}(t)$ is to be the Alexander polynomial of K.

- If $w_{k}=w\left(x_{0}, x_{1}, \cdots, x_{k}\right)$ is the principal relation of the Dunwoody 3manifold represented by $D_{n}(a, b, c, r, s)$ for some n, then $f_{w}^{n}(t)$ is the Alexander polynomial of K in \mathbb{S}^{3}.

In particular, the Dunwoody $(1,1)$-knot $K=K(a, b, c, r)$ defined in (2.1) and (2.2) for $K=T(k, h k \pm 2)$ with $h, k>0$ induces the Dunwoody 3-manifold represented by $D_{n}(a, b, c, r, s)$ for some s. Using the principal relation, say w, of $D_{n}(a, b, c, r, s)$, we can obtain the Dunwoody polynomial $f_{w}^{n}(t)$ such that $f_{w}^{n}(t) \doteq \triangle_{K}(t)$. For example, let K be a torus knot $T(5,7)$ satisfying $7 \equiv 2 \bmod 5$. On $D_{n}(2,1,12,13,-5)$ with $n>29$, we can obtain a relation w as the following

$$
w=x_{0}^{-1} x_{1}^{1} x_{6}^{1} x_{11}^{1} x_{16}^{1} x_{17}^{-1} x_{12}^{-1} x_{7}^{-1} x_{8}^{1} x_{13}^{1} x_{18}^{1} x_{23}^{1} x_{24}^{-1}
$$

$$
x_{19}^{-1} x_{14}^{-1} x_{10}^{-1} x_{5}^{-1}
$$

Then the relation w is principal in $D_{n}(2,1,12,13,-5)$ for condition $n>29$. Thus it was shown in [13] that $f_{w}^{n}(t)$ is the Alexander polynomial of K.

For each knot K in \mathbb{S}^{3}, we denote the projection of $\triangle_{K}(t)$ into $\mathbb{Z}[t] /\left(t^{n}-1\right)$ with $\triangle_{K}^{n}(t)$. The following corollary shows the connections between the projection of Alexander polynomial into $\mathbb{Z}[t] /\left(t^{n}-1\right)$ and the Dunwoody polynomial for the Dunwoody $(1,1)$-knot in \mathbb{S}^{3}.

Corollary 3.2([4]). Let $D(a, b, c, r)$ be the Dunwoody (1,1)-decomposition of $\left(\mathbb{S}^{3}, K\right)$ and $n>1$. Then $f_{w}^{n}(t) \doteq \triangle_{K}^{n}(t)$ in $\mathbb{Z}[t] /\left(t^{n}-1\right)$, where \doteq means equal up to units.

The following corollary is required the degree of the Alexander polynomial in order to obtain the Dunwoody polynomial.

Corollary 3.3([4]). Let K be the Dunwoody $(1,1)$-knot representing $T(k, h k \pm 1)$ with $h, k>0$ and $n>1$. Suppose that $f_{w}^{n}(t)$ is the Dunwoody polynomial associated to the cyclic presentation obtained by applying Theorem 7 in [4]. Then $f_{w}^{n}(t) \doteq$ $\triangle_{K}(t)$ in $\mathbb{Z}[t] /\left(t^{n}-1\right)$ if $n>\operatorname{deg}\left(\triangle_{K}(t)\right)$, where \doteq means equal up to units.

For example, no more the result of Corollary 3.3 is true for $T(5,7)$ and $\operatorname{deg}\left(\triangle_{K}(t)\right)=24$. In fact, for $n=25$, the relation w is not principal because x_{23} and x_{24}^{-1} in w are equal to x_{-2} and x_{-1}^{-1} under $D_{25}(2,1,12,13,-5)$, respectively, that is, w is not independent of 25 . Thus w is equal to the relation

$$
x_{0}^{-1} x_{1}^{1} x_{6}^{1} x_{11}^{1} x_{16}^{1} x_{17}^{-1} x_{12}^{-1} x_{7}^{-1} x_{8}^{1} x_{13}^{1} x_{18}^{1} x_{-2}^{1} x_{-1}^{-1} x_{19}^{-1} x_{14}^{-1} x_{10}^{-1} x_{5}^{-1}
$$

on $D_{25}(2,1,12,13,-5)$. In case of Corollary 3.3, we have to know the degree of $\triangle_{K}(t)$ in order to show that $f_{w}^{n}(t)$ is to be the Alexander polynomial of K. However, without the condition for the degree of $\triangle_{K}(t)$, we can show that $f_{w}^{n}(t)$ is to be the Alexander polynomial of the torus knot K (generally, the Dunwoody (1, 1)-knot in \mathbb{S}^{3}) from properties itself.

As the main result of this section, we show that the Dunwoody polynomial is to be the Alexander polynomial. In other words we give the condition for n in order that $D_{n}(a, b, c, r, s)$ admits always the principal cyclic presentation.

Given p and q defined on $D(a, b, c, r)$ which is the Dunwoody $(1,1)$-decomposition determined by two permutations α and β such that $|\beta \alpha|=2$, we recall that $D_{n}(a, b, c, r, s)$ satisfies $p s+q \equiv 0 \bmod n$ for some $n>1$ and $s \in \mathbb{Z}$. First of all, we define a cyclic sequence from $D_{n}(a, b, c, r, s)$ as follows. We set

$$
\begin{gathered}
A^{+}=\{1,2, \cdots, a\} \\
B^{+}=\{a+1, a+2, \cdots, a+b\} \\
C^{+}=\{a+b+1, a+b+2, \cdots, a+b+c\}
\end{gathered}
$$

$$
\begin{gathered}
E^{+}=\{a+b+c+1, a+b+c+2, \cdots, a+b+c+a=d\} \\
A^{-}=\{-1,-2, \cdots,-a\} \\
C^{-}=\{-a-1,-a-2, \cdots,-a-c\} \\
B^{-}=\{-a-c-1,-a-c-2, \cdots,-a-c-b\}, \quad \text { and } \\
E^{-}=\{-a-c-b-1,-a-c-b-2, \cdots \\
-a-c-b-a=-d\}
\end{gathered}
$$

Then $A^{+} \cup B^{+} \cup C^{+} \cup E^{+}=X^{+}$and $A^{-} \cup C^{-} \cup B^{-} \cup E^{-}=X^{-}$. For each $0 \leq i \leq n-1$, let C_{i} be the i-th meridian disk i of the Heegaard diagram $D_{n}(a, b, c, r, s)$ as in Figure 2, and \bar{C}_{i} the i-th meridian disk \bar{i} of the Heegaard diagram $D_{n}(a, b, c, r, s)$. For $0 \leq i \leq n-1$ and $1 \leq j \leq d$, a point (i, j) on $D_{n}(a, b, c, r, s)$ means the number j in i-th meridian disk C_{i}, and a point $(\bar{i},-j)$ means the number $-j$ in i-th meridian disk \bar{C}_{i}, So if $(i, j) \in D_{n}(a, b, c, r, s)$ is a starting point at C_{i}, then $\theta^{n-1}(i, j)=(i+n-1, j)$ is a starting point at $\theta^{n-1}\left(C_{i}\right)$. We define the rules corresponding to i on $D_{n}(a, b, c, r, s)$ and α on $D(a, b, c, r)$ by

$$
\left\{\begin{array}{l}
(i, a) \rightarrow(i+1, \alpha(a)) \quad \text { if } \quad a \in A^{+} \tag{3.1}\\
(i, b) \rightarrow(\overline{i+s+1}, \alpha(b)) \quad \text { if } b \in B^{+} \\
(i, c) \rightarrow(\overline{i+s}, \alpha(c)) \text { if } c \in C^{+} \\
(i, e) \rightarrow(i-1, \alpha(e)) \text { if } \quad e \in E^{+}
\end{array} .\right.
$$

The rules corresponding to \bar{i} on $D_{n}(a, b, c, r, s)$ and α on $D(a, b, c, r)$ are defined by

$$
\left\{\begin{array}{l}
(\bar{i},-a) \rightarrow(\overline{i+1}, \alpha(-a)) \text { if }-a \in A^{-} \tag{3.2}\\
(\bar{i},-c) \rightarrow(i-s, \alpha(-c)) \text { if }-c \in C^{-} \\
(\bar{i},-b) \rightarrow(i-(s+1), \alpha(-b)) \text { if }-b \in B^{-} \\
(\bar{i},-e) \rightarrow(\overline{i-1}, \alpha(-e)) \text { if }-e \in E^{-}
\end{array} .\right.
$$

Moreover, the identification between i-th meridian disk C_{i} and i-th meridian disk \bar{C}_{i} on $D_{n}(a, b, c, r, s)$ is defined by

$$
\left\{\begin{array}{l}
(i, x) \rightarrow(\bar{i}, \beta(x)) \text { if } x \in X^{+} \tag{3.3}\\
(\bar{i},-x) \rightarrow(i, \beta(-x)) \text { if }-x \in X^{-} .
\end{array}\right.
$$

By the property of the n-fold strongly-cyclic branched covering space, we have the following.

Lemma 3.4. Let $(0,1)$ be a starting point on $D_{n}(a, b, c, r, s)$ and $d=2 a+b+c$. Then we have $(\beta \alpha)^{d}(0,1)=(p s+q, 1)$.
Proof. From α and β defined in Theorem 2.1, $\beta \alpha$ with length d determines the simple closed curve in $D(a, b, c, r)$ with the starting point $(0,1)$. The simple closed curve is lifted to n simple closed curves on $D_{n}(a, b, c, r, s)$ which is determined by (3.1), (3.2) and (3.3). For $0 \leq i \leq n-1$ and $1 \leq j \leq d$, if $(i, j) \in D_{n}(a, b, c, r, s)$ is
a starting point of a curve of the n simple closed curves on $D_{n}(a, b, c, r, s)$, we have $(\beta \alpha)^{d}(i, j)=(p s+q+i, j)$ because of $p s+q \equiv 0 \bmod n$. In particular, let $(0,1)$ be a starting point on $D_{n}(a, b, c, r, s)$. Then the proof follows from the above result.

For $0 \leq i \leq n-1$ and $1 \leq j \leq d$, if $(i, j) \in D_{n}(a, b, c, r, s)$ is a starting point, we have a sequence

$$
\begin{gathered}
(i, j) \rightarrow(\beta \alpha)(i, j) \rightarrow(\beta \alpha)^{2}(i, j) \cdots \rightarrow \\
(\beta \alpha)^{d-1}(i, j) \rightarrow(\beta \alpha)^{d}(i, j)=(p s+q+i, j) .
\end{gathered}
$$

The sequence from (i, j) to $(p s+q+i, j)$ determined by (3.1), (3.2) and (3.3) is called a cyclic sequence of $D_{n}(a, b, c, r, s)$. We note that the cyclic sequences of $D_{n}(a, b, c, r, s)$ are independent of the choice of the starting points on itself.

We now suppose that $(0,1)$ is a starting point which is the number 1 in 0 -th meridian disk of $D_{n}(a, b, c, r, s)$. Since $1 \in A^{+}$and $\alpha(1)=d$, we have $(0,1) \rightarrow(1, d)$ by (3.1). Since $r<d, \beta(d)=-d+r$ and so $(1, d) \rightarrow(\overline{1},-d+r)$ by (3.3). Thus $(0,1) \rightarrow(\overline{1},-d+r)$ under $\beta \alpha$, or $\beta \alpha(0,1)=(\overline{1},-d+r)$. Applying repeated process, we obtain $(\beta \alpha)^{d}(0,1)=(p s+q, 1)$ by Lemma 3.4. We define a relation

$$
w=x_{0} x_{\beta \alpha(0)}^{ \pm 1} x_{(\beta \alpha)^{2}(0)}^{ \pm 1} x_{(\beta \alpha)^{3}(0)}^{ \pm 1} \cdots x_{(\beta \alpha)^{d-1}(0)}^{ \pm 1}
$$

on $D_{n}(a, b, c, r, s)$ induced by the cyclic sequence of $D_{n}(a, b, c, r, s)$, where

$$
x_{(\beta \alpha)^{k}(0)}^{ \pm 1}= \begin{cases}x_{(\beta \alpha)^{k}(0)} & \text { if }(\beta \alpha)^{k}(0)=i \\ x_{(\beta \alpha)^{k}(0)}^{-1} & \text { if }(\beta \alpha)^{k}(0)=\bar{i} .\end{cases}
$$

If $(\beta \alpha)^{k}(0)=\overline{-i}$ and $(\beta \alpha)^{k}(0)=-i$, then $x_{(\beta \alpha)^{k}(0)}^{ \pm 1}=x_{-i}^{-1}$ and $x_{(\beta \alpha)^{k}(0)}^{ \pm 1}=x_{-i}$, respectively. We can assume that $(\beta \alpha)^{k}(0) \geq 0$ under $\bmod n$ for all $1 \leq k \leq d$. For each $0 \leq i \leq n-1$, we note that $\theta^{i}(w)$ has the starting point $(i, 1)$ and the final point $(p s+q+i, 1)$ with $(\beta \alpha)^{d}(i, 1)=(p s+q+i, 1)$. Thus the abelianized word of w induces the Dunwoody polynomial

$$
f_{w}^{n}(t)=t^{0} \pm t^{\beta \alpha(0)} \pm t^{(\beta \alpha)^{2}(0)} \pm \cdots \pm t^{(\beta \alpha)^{d-1}(0)}
$$

by substituting $-t^{-i}$ into x_{-i}^{-1}. If $\left|(\beta \alpha)^{k}(0)\right|<n$ for each $1 \leq k \leq d-1$, then w is the principal relation of the cyclic presentation of $D_{n}(a, b, c, r, s)$ and we have $\operatorname{deg}\left(f_{w}^{n}(t)\right)=M^{+}-M^{-}$where $M^{+}=\max _{0 \leq k \leq d-1}\left\{(\beta \alpha)^{k}(0)\right\}$ and $M^{-}=\min _{0 \leq k \leq d-1}\left\{(\beta \alpha)^{k}(0)\right\}$.

Suppose that $D(a, b, c, r)$ is the Dunwoody (1,1)-decomposition representing a $(1,1)$-knot K in \mathbb{S}^{3}. Since $p= \pm 1$ and $p s+q=0, s=\mp q$. For each $n>1$, there exists the Dunwoody 3-manifold represented by $D_{n}(a, b, c, r, s)$, which is the n-fold (strongly-) cyclic covering of \mathbb{S}^{3} branched over K. By Lemma 3.4, the cyclic sequence of $D_{n}(a, b, c, r, s)$ has $(\beta \alpha)^{d}(0,1)=(0,1)$. Since each $\left\{C_{i}, \bar{C}_{i+s}\right\}$
in $D_{n}(a, b, c, r, s)$ is connected by c edges, the relation w is independent of n if $n>M^{+}-M^{-}+|s|$. Therefore $f_{w}^{n}(t)$ is the Alexander polynomial of the Dunwoody $(1,1)$-knot K in \mathbb{S}^{3} if $n>M^{+}-M^{-}+|s|$. We remark that there is a natural way to obtain the Dunwoody polynomial $\left.f_{w}^{n}(t) \in \mathbb{Z}[t] /\left(t^{n}-1\right)\right)$ associated to the Dunwoody $(1,1)$-knot K in \mathbb{S}^{3} because of the uniqueness of s in \mathbb{Z}_{n} with $p s+q \equiv 0 \bmod n$. Summarizing, we have proved the following.

Theorem 3.5. Let $D(a, b, c, r)$ be the Dunwoody $(1,1)$-decomposition of $\left(\mathbb{S}^{3}, K\right)$, and α and β be two transpositions defined in Theorem 2.1. Let $w\left(x_{0}, \cdots, x_{n-1}\right)$ be a relation induced by the cyclic sequence of $D_{n}(a, b, c, r, \mp q)$ for $n>1, M^{+}=$ $\max _{0 \leq k \leq d-1}\left\{(\beta \alpha)^{k}(0)\right\}$ and $M^{-}=\min _{0 \leq k \leq d-1}\left\{(\beta \alpha)^{k}(0)\right\}$. Then $f_{w}^{n}(t)$ is the Alexander polynomial of K if $n>M^{+}-M^{-}+|s|$.

We give two canonical examples as follows.

Example 3.

$\left.\begin{array}{llll}(0, & 1) & \xrightarrow[\beta]{\alpha} & (1, \\ \hline\end{array}\right)$

Let $D(2,3,2,5)$ be a Dunwoody (1, 1)-decomposition. Then we obtain $p=1$ and $q=7$ from an oriented curve on $D(2,3,2,5)$ defined in section 2 . Since $p=1$, it is representing a Dunwoody (1,1)-knot $K(2,3,2,5)$ in \mathbb{S}^{3}. Since $q=7$, we have $s=-7$. Therefore, for all $n>1$, there exists a Dunwoody 3 -manifold represented by $D_{n}(2,3,2,5,-7)$. In order to show a principal relation on $D_{n}(2,3,2,5,-7)$ we need a cyclic sequence as above. For a Dunwoody (1, 1)-decomposition $D(2,3,2,5)$, setting $A^{+}=\{1,2\}, B^{+}=\{3,4,5\}, C^{+}=\{6,7\}, E^{+}=\{8,9\}$, and $A^{-}=\{-1,-2\}$, $C^{-}=\{-3,-4\}, B^{-}=\{-5,-6,-7\}$, and $E^{-}=\{-8,-9\}$, then we have $A^{+} \cup B^{+} \cup$
$C^{+} \cup E^{+}=X^{+}$and $A^{-} \cup C^{-} \cup B^{-} \cup E^{-}=X^{-}$. Let $(0,1)$ be the starting point on $D_{n}(2,3,2,5,-7)$. Then we have a cyclic sequence by applying (3.1), (3.2) and (3.3) as above. Thus the relation w induced by the above cyclic sequence is

$$
w=x_{0} x_{1}^{-1} x_{8}^{-1} x_{9} x_{3} x_{4}^{-1} x_{11}^{-1} x_{12} x_{6}
$$

and the Dunwoody polynomial $f_{w}^{n}(t)$ is

$$
f_{w}^{n}(t)=1-t+t^{3}-t^{4}+t^{6}-t^{8}+t^{9}-t^{11}+t^{12}
$$

Since $M^{+}=12$ and $M^{-}=0$, the relation w on $D_{n}(2,3,2,5,-7)$ is principal for $n>19$. In fact, $f_{w}^{n}(t)$ is the Alexander polynomial of $K(2,3,2,5)$ representing $T(3,7)$, which can be obtained by considering the principal cyclic presentation of $D_{20}(2,3,2,5,-7)$.

Example 4.

$\left.\begin{array}{llll}(0, & 1\end{array}\right) \xrightarrow{\xrightarrow{\alpha}} \quad\left(\begin{array}{ll}1, & 9\end{array}\right)$

Let $D(2,1,4,6)$ be a Dunwoody (1, 1)-decomposition with $p=-1$ and $q=3$. Since $p s+q=0$, there exists a Dunwoody 3-manifold represented by $D_{n}(2,1,4,6,3)$ for all $n>1$. To obtain a principal relation for $D_{n}(2,1,4,6,3)$, we need a cyclic sequence as above. For $D(2,1,4,6)$, setting $A^{+}=\{1,2\}, B^{+}=\{3\}, C^{+}=\{4,5,6,7\}$, $E^{+}=\{8,9\}$, and $A^{-}=\{-1,-2\}, C^{-}=\{-3,-4,-5,-6\}, B^{-}=\{-7\}$, and $E^{-}=$ $\{-8,-9\}$, then we have $A^{+} \cup B^{+} \cup C^{+} \cup E^{+}=X^{+}$and $A^{-} \cup C^{-} \cup B^{-} \cup E^{-}=X^{-}$. By applying (3.1), (3.2) and (3.3), we have a cyclic sequence as above. Thus we have a relation

$$
w=x_{1} x_{-2} x_{-6} x_{-9} x_{-8}^{-1} x_{-5}^{-1} x_{-4} x_{-3}^{-1} x_{0}^{-1} .
$$

Hence the Dunwoody polynomial is

$$
f_{w}^{n}(t)=t^{-9}\left(1-t+t^{3}-t^{4}+t^{5}-t^{6}+t^{7}-t^{9}+t^{10}\right)
$$

Since $M^{+}=1$ and $M^{-}=-9$, the relation w on $D_{n}(2,1,4,6,3)$ is principal for $n>$ 13 , so $f_{w}^{n}(t)$ is the Alexander polynomial of $K(2,1,4,6)$ representing the pretzel knot $P(-2,3,7)$, which can be obtained by considering the principal cyclic presentation of $D_{14}(2,1,4,6,3)$.

The next corollaries are immediate consequences of the previous considerations.

Corollary 3.6. Let $D(a, b, c, r)$ be the Dunwoody $(1,1)$-decomposition of $\left(\mathbb{S}^{3}, K\right)$. Suppose that α and β are two permutations defined by Theorem 2.1. Let $w\left(x_{0}, \cdots\right.$, $\left.x_{k}\right)$ be a relation induced by the cyclic sequence of $D_{n}(a, b, c, r, \mp q)$ for each $n>1$, $M^{+}=\max _{0 \leq k \leq d-1}\left\{(\beta \alpha)^{k}(0)\right\}$ and $M^{-}=\min _{0 \leq k \leq d-1}\left\{(\beta \alpha)^{k}(0)\right\}$, where $d=2 a+$ $b+c$. Then $f_{w}^{n}(t)$ is the Alexander polynomial of K if n is the smallest positive integer n_{0} such that $n_{0}>M^{+}-M^{-}+|s|$.

Let $T(i, j)$ be the torus knot such that $2 \leq i \leq j$ and $j=\bar{j}+i k$ for some $k \in \mathbb{Z}$. Let $\bar{j}= \pm 1$, then the following (\star) is the families of the Dunwoody 3 -manifolds and their branched sets $T(i, j)$, where $i \geq 3$ and $k \geq 1$. Note that these are different with the families introduced in [4]. As applications of Theorem 3.5, for the Dunwoody (1,1)-knots representing $T\left(k_{1}, k_{2}\right)$ satisfying $k_{2} \equiv \pm 1 \bmod k_{1}$ as

$$
\begin{align*}
& T(i, k i+1) \leftrightarrow D_{n}(1, i-2,(i-1)+(k-1)(2 i-2),(i-1)+(k-1)(2 i-2), i) \\
& T(i,(k+1) i-1) \leftrightarrow D_{n}(1, i-2,(3 i-5)+(k-1)(2 i-2), 3 i-4,-i)
\end{align*}
$$

and $k_{2} \equiv \pm 2 \bmod k_{1}$ as (2.1) or (2.2), we show their Alexander polynomial and certain invariant. In our case Corollary 3.3 can be modified as follows.

Corollary 3.7. Let $K=K(a, b, c, r)$ be the Dunwoody (1,1)-knot as in (\star) and $n>1$. Then $f_{w}^{n}(t) \doteq \triangle_{K}(t)$ if $n>M^{+}-M^{-}+|s|$, where \doteq means equal up to units.

For the Dunwoody $(1,1)$-knots satisfying (2.1) or (2.2), we have the following.
Corollay 3.8. Let $K=K(a, b, c, r)$ be the Dunwoody (1,1)-knot representing $T\left(k_{1}, k_{2}\right)$ with $k_{2} \equiv \pm 2 \bmod k_{1}$ as in (2.1) or (2.2). Then $f_{w}^{n}(t) \doteq \triangle_{K}(t)$ if $n>M^{+}-M^{-}+|s|$, where \doteq means equal up to units.

We suppose that $K(a, b, c, r)$ is the Dunwoody (1, 1)-knot representing $T\left(k_{1}, k_{2}\right)$ satisfying $k_{2} \equiv \pm 1$ or $\pm 2 \bmod k_{1}$ as (\star) or (2.1) and (2.2). Then the following shows that $d=2 a+b+c$ is an invariant for $K(a, b, c, r)$.

Theorem 3.9. Let $T\left(k_{1}, k_{2}\right)$ be the torus knot with $k_{2} \equiv \pm 2$ mod k_{1} as in (2.1) or (2.2). Then d is an invariant of $T\left(k_{1}, k_{2}\right)$, where

$$
d=\left\{\begin{array}{ll}
k_{1}+\frac{\left(k_{1}^{2}-1\right)\left(k_{2}-2\right)}{2 k_{1}} \quad \text { if } & k_{2} \equiv 2 \bmod k_{1} \\
k_{1}+\frac{k_{1}^{2}\left(k_{2}-2\right)-\left(k_{2}+2\right)}{2 k_{1}} & \text { if } k_{2} \equiv-2 \bmod k_{1}
\end{array} .\right.
$$

Proof. We suppose that $T\left(k_{1}, k_{2}\right)$ be the torus knot with $k_{2} \equiv \pm 2 \bmod k_{1}$. Then the Dunwoody 3-manifold represented by $D_{n}(a, b, c, r, s)$ satisfies (2.1) or (2.2). Let $n>M^{+}-M^{-}+|s|$. On $D_{n}(a, b, c, r, s)$, we have a principal relation w from a cyclic sequence by applying (3.1), (3.2) and (3.3). Thus the Dunwoody polynomial $f_{w}(t)$ of degree $M^{+}-M^{-}$is the Alexander polynomial of $T\left(k_{1}, k_{2}\right)$, and $M^{+}-M^{-}=$ $\left(k_{1}-1\right)\left(k_{2}-1\right)$. Since the length of w is d, the number of terms of $\triangle\left(k_{1}, k_{2}\right)$ is $d=2 a+b+c$. Therefore d is an invariant of $T\left(k_{1}, k_{2}\right)$.

For (\star), the similar argument can be applied as the following.
Corollary 3.10. Let $T(i, j)$ be the torus knot with $3 \leq i \leq j$ and $j=k i \pm 1$ for some $k \geq 1$ in \mathbb{Z}. Then d is an invariant of $T(i, j)$, where

$$
d=\left\{\begin{array}{ll}
(2 i-1)+(k-1)(2 i-2) & \text { if } j=k i+1 \\
(4 i-5)+(k-1)(2 i-2) & \text { if } j=k i-1
\end{array} .\right.
$$

We recall that if $\triangle_{K}^{n}(t) \in \mathbb{Z}[t] /\left(t^{n}-1\right)$ is the projection of the Alexander polynomial of $K=K(a, b, c, r)$, then there is a connection between $f_{w}^{n}(t)$ and $\triangle_{K}^{n}(t)$, which follows from the result of Theorem 4.1 in [3].
Corollary 3.11. Let $K=K(a, b, c, r)$ be a (1,1)-knot in the lens space $L\left(p, q^{\prime}\right)$ and $H_{1}\left(L\left(p, q^{\prime}\right)-K\right)=\mathbb{Z} \oplus \mathbb{Z}_{\bar{d}}$, where $\bar{d}=\operatorname{gcd}(p, q)$. Then for each $n>1$ such that $\operatorname{gcd}(n, p)=1$, we have

$$
f_{w}^{n}\left(t^{p / \bar{d}}\right)=\triangle_{K}^{n}(t) \cdot \frac{\left(t^{p / \bar{d}}-1\right)}{(t-1)}
$$

up to units of $\mathbb{Z}[t] /\left(t^{n}-1\right)$.
In Corollary 3.11, the cyclotomic polynomial

$$
\frac{\left(t^{p / \bar{d}}-1\right)}{(t-1)}=1+t+t^{2}+\cdots+t^{p / \bar{d}-1}
$$

is irreducible polynomial if p / \bar{d} is prime. Let $n>1$ and $\operatorname{gcd}(p, n)=1$. Then the following example explains one way to obtain the Alexander polynomial of $K(a, b, c, r)$ in $L\left(p, q^{\prime}\right)$ from the Dunwoody polynomial on $D_{n}(a, b, c, r, s)$ with $p s+$ $q \equiv 0 \bmod n$.

Example 5. Let $D(1,5,0,6)$ be a (1, 1)-decomposition with $p=5$ and $q=7$ and
$K=K(1,5,0,6)$ a $(1,1)$-knot in the lens space $L(5,1)$. Then there is a unique $s \in \mathbb{Z}_{12}$ such that $5 s+7 \equiv 0 \bmod 12$. On $D_{12}(1,5,0,6,1)$ we have a principal relation

$$
w=x_{0} x_{1}^{-1} x_{2} x_{4} x_{6} x_{8} x_{10}
$$

induced by a cyclic sequence as follow:
$\left.\begin{array}{llll}(0, & 1\end{array}\right) \xrightarrow{\xrightarrow{\alpha}} \quad\left(\begin{array}{ll}1, & 7\end{array}\right)$

Thus we obtain the Dunwoody polynomial

$$
\begin{aligned}
f_{w}^{12}(t) & \doteq 1+t^{2}+t^{4}+t^{6}+t^{8}+t^{10}-t^{-1} \\
& \doteq 1+t^{2}+t^{4}+t^{6}+t^{8}+t^{10}-t^{11}
\end{aligned}
$$

By Corollary 3.11, putting $t^{p / \bar{d}}=t^{5}$, we have

$$
\begin{aligned}
f_{w}^{12}\left(t^{5}\right) \doteq & 1+t^{10}+t^{20}+t^{30}+t^{40}+t^{50}-t^{55} \\
\doteq & t^{-10}\left(1+t^{4}-t^{5}+t^{6}+t^{2}+t^{8}+t^{10}\right) \\
= & \left(1-t+t^{2}-t^{3}+t^{4}-t^{5}+t^{6}\right) \\
& \cdot\left(1+t+t^{2}+t^{3}+t^{4}\right) \\
= & \left(1-t+t^{2}-t^{3}+t^{4}-t^{5}+t^{6}\right) \frac{\left(t^{5}-1\right)}{(t-1)}
\end{aligned}
$$

and so $\triangle_{K}^{12}=1-t+t^{2}-t^{3}+t^{4}-t^{5}+t^{6}$ is the Alexander polynomial of the (1, 1)-knot $K(1,5,0,6)$, where the multiplication for t^{10} requires condition $n>10$.

Indeed we have the same result from $D_{22}(1,5,0,6,3)$. However the Dunwoody polynomial induced by $D_{7}(1,5,0,6,0)$ does not give the Alexander polynomial of the $(1,1)$-knot $K(1,5,0,6)$ because of $7<10$. In other words, the Dunwoody polynomial induced by $D_{7}(1,5,0,6,0)$ is not the Alexander polynomial of the (1,1)-knot $K(1,5,0,6)$. From this example, we may have the possibility that the Alexander
polynomial of the Dunwoody $(1,1)$-knot in a lens space can be obtained from the Dunwoody polynomial.

References

[1] H. Aydin, I. Gultekin and M. Mulazzani, Torus knots and Dunwoody manifolds, Siberian Math. J., 45(2004), 1-6.
[2] J. W. Alexander, Topological invariants of knots and links, Amer. Math. Soc., 20(1923), 275-306.
[3] A. Cattabriga, The Alexander polynomial of (1,1)-knots, J. Knot Theory its Ramifications, 15(9)(2006), 1119-1129.
[4] A. Cattabriga and M. Mulazzani, Strongly-cyclic branched coverings of $(1,1)$-knots and cyclic presentations of groups, Math. Proc. Camb. Phil. Soc., 135(2003), 137-146.
[5] A. Cattabriga and M. Mulazzani, All strongly-cyclic branched coverings of (1,1)-knots are Dunwoody manifolds, J. London Math. Soc., 70(2004), 512-528.
[6] A. Cattabriga and M. Mulazzani, Representations of (1,1)-knots, Fund. Math., 118(2005), 45-57.
[7] A. Cattabriga, M. Mulazzani and A. Vesnin, Complexity, Heegaard diagrams and generalized Dunwoody manifolds, J. Korean Math.Soc., 47(3)(2010), 585-599.
[8] A. Cavicchioli, B. Ruini and F. Spaggiari, On a conjecture of M.J.Dunwoody, Algebra Coll., 8(2)(2001), 169-218.
[9] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Springer-Verlag, Berlin, (1963).
[10] M. J. Dunwoody, Cyclic presentations and 3-manifolds, Proc. Inter. Conf., GroupKorea '94, Walter de Gruyter, Berlin-New York (1995), 47-55.
[11] L. Grasselli and M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds, Forum Math., 13(2001), 379-397.
[12] S. H. Kim, On spatial theta-curves with the same $\left(Z_{2} \oplus Z_{2}\right)$-fold and 2-fold branched covering, Note di Mathematica, 23(1)(2004/2005), 111-122.
[13] S. H. Kim and Y. Kim, Torus knots and 3-manifolds, J. Knot Theory and its Ram., 13(8)(2004), 1103-1119.
[14] S. H. Kim and Y. Kim, On the 2-bridge knots of Dunwoody (1, 1)-knots, Bull. Korean Math. Soc., 48(1)(2011), 197-211.
[15] S. H. Kim and Y. Kim, On the generalized Dunwoody 3-manifolds, Osaka Journal of Mathematics, to appear.
[16] M. Mulazzani, Cyclic presentations of groups and cyclic branched coverings of (1,1)knots, Bull. Korean Math. Soc., 40(1)(2003), 101-108.
[17] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Camb. Phil. Soc., 64(1)(1968), 603-613.
[18] D. Rolfsen, Knots and Links, Math. Lect. Series, Vol.7, Berkeley, Publish or Perish inc., (1976).
[19] H. J. Song and S. H. Kim, Dunwoody 3-manifolds and (1, 1)-decomposiable knots, Proc. Workshop in pure math(edited by Jongsu Kim and Sungbok Hong), 19(2000), 193-211.
[20] V. G. Turaev, The Alexander polynomial of a three-dimensional manifold, USSR Sbornik, 26(1975), 313-329.
[21] V. G. Turaev, Introduction to Combinatorial Torsions, Birkhauser, Basel, Boston, Berlin, 2001.

[^0]: * Corresponding Author.

 Received May 8, 2010; accepted February 19, 2012.
 2010 Mathematics Subject Classification: Primary 57M12, 57M25, 57M27, 57M50; Secondary $57 \mathrm{M} 05,57 \mathrm{M} 10,57 \mathrm{M} 15,57 \mathrm{M} 60$.
 Key words and phrases: Torus knot, (1, 1)-knot, (1, 1)-decomposition, Dunwoody 3manifold, Alexander polynomial, Heegaard splitting, Heegaard diagram.
 This work was supported by Dong-eui University Grant(2010AA088).

