• Title/Summary/Keyword: k-hyponormal

Search Result 85, Processing Time 0.02 seconds

FUGLEDE-PUTNAM THEOREM FOR p-HYPONORMAL OR CLASS y OPERATORS

  • Mecheri, Salah;Tanahashi, Kotaro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.747-753
    • /
    • 2006
  • We say operators A, B on Hilbert space satisfy Fuglede-Putnam theorem if AX = X B for some X implies $A^*X=XB^*$. We show that if either (1) A is p-hyponormal and $B^*$ is a class y operator or (2) A is a class y operator and $B^*$ is p-hyponormal, then A, B satisfy Fuglede-Putnam theorem.

Weakly Hyponormal Composition Operators and Embry Condition

  • Lee, Mi-Ryeong;Park, Jung-Woi
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.683-689
    • /
    • 2009
  • We investigate the gaps among classes of weakly hyponormal composition operators induced by Embry characterization for the subnormality. The relationship between subnormality and weak hyponormality will be discussed in a version of composition operator induced by a non-singular measurable transformation.

EXTREMAL PROBLEM OF A QUADRATICALLY HYPONORMAL WEIGHTED SHIFT

  • Lee, Hee-Yul;Lee, Mi-Ryeong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.673-678
    • /
    • 2008
  • Let $W_{\alpha}$, be a recursively generated quadratically hyponormal weighted shift with a weight sequence ${\alpha}$ : 1, (1, $\sqrt{x}$, $\sqrt{y}$)$^{\wedge}$. In [4] Curto-Jung showed that R = {(x,y) : $W_{1,\;(1,\;{\sqrt{x}},\;{\sqrt{y}})^{\wedge}}$ is quadratically hyponormal} is a closed convex with nonempty interior, which guarantees that there are a lot of quadratically hyponormal weighted shifts with first two equal weights. They suggested a problem computing expressions of certain extremal points of R. In this note we obtain a partial answer of their extremal problem.

  • PDF

A DOUBLY COMMUTING PAIR OF HYPONORMAL OPERATORS

  • Kim, Yong-Tae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.351-355
    • /
    • 1999
  • If ($H_1$, $H_2$) is a doubly commuting pair of hyponormal operators on a Hilbert spaces H, then there exists a commuting pair ($T_1$,$T_1$) of contractions on H such that $H_i$=$H_i^*$$T_i$ for each i=1,2.

  • PDF

A NOTE ON THE ESSENTIAL SPECTRUM OF AN IRREDUCIBLE P-HYPONORMAL OPERATOR

  • Lee, Kwang-Il;Cha, Hyung-Koo
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, we have the extended result of Bunce's theorem. And we show that if T is an irreducible p-hyponormal operator such that T*T-TT* is compact, then ${\sigma}_{ap}(T)={\sigma}_e(T)$ and ${\sigma}_p({\phi}(T))={\sigma}_e({\phi}(T))$.

  • PDF

A SUFFICIENT CONDITION FOR HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Sumin Kim;Jongrak Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1019-1031
    • /
    • 2024
  • In this paper we consider the sufficient condition for hyponormal Toeplitz operators T𝛗 with non-harmonic symbols $${\varphi}(z)=\sum_{\ell=1}^{k}{\alpha}_{\ell}z^{{m_{\ell}}{\bar{z}}n_{\ell}}$$ with m-n = δ > 0 for all 1 ≤ ℓ ≤ k, and α ∈ ℂ on the Bergman spaces. In particular, we will observe the characteristics of the hyponormality of the Toeplitz operators T𝛗 according to the positional relationship of the coefficients α's.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF