A DOUBLY COMMUTING PAIR OF HYPONORMAL OPERATORS

YONG TAE KIM

ABSTRACT. If (H_1, H_2) is a doubly commuting pair of hyponormal operators on a Hilbert spaces \mathcal{H} , then there exists a commuting pair (T_1, T_2) of contractions on \mathcal{H} such that $H_i = H_i^* T_i$ for each i = 1, 2.

Throughout this note let \mathcal{H} be a Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is called a *contraction* if $||T|| \leq 1$ and is called *hyponormal* if $T^*T - TT^* \geq 0$. A pair (T_1, T_2) of operators on \mathcal{H} is called a *doubly commuting pair* if $T_1T_2 = T_2T_1$ and $T_1T_2^* = T_2^*T_1$. In 1966, R. Douglas ([2]) showed that if $A, B \in \mathcal{L}(\mathcal{H})$ then the following are equivalent:

- (i) A = BC for some $C \in \mathcal{L}(\mathcal{H})$;
- (ii) $||A^*x|| \le k ||B^*x||$ for some $k \ge 0$ and all $x \in \mathcal{H}$;
- (iii) $\operatorname{ran} A \subseteq \operatorname{ran} B$.

As an interesting corollary of the above theorem, it can be shown (cf. [1]) that if H is a hyponormal operator on \mathcal{H} then there exists a contraction $T \in \mathcal{L}(\mathcal{H})$ such that $H = H^*T$. If (H_1, H_2) is a commuting pair of hyponormal operators on \mathcal{H} then there exist contractions $T_1, T_2 \in \mathcal{L}(\mathcal{H})$ such that $H_i = H_i^*T_i$ for each i = 1, 2. But in this case, T_1 and T_2 may not commute. In this note we show that there exist commuting such contractions for a doubly commuting pair of hyponormal operators. The following is our main theorem.

Received June 27, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47B20; Secondary 47A13.

Key words and phrases: hyponormal operators, doubly commuting, contractions.

This paper was supported by Faculty Research Fund, Sungkyunkwan University, 1997

Yong Tae Kim

THEOREM 1. If (H_1, H_2) is a doubly commuting pair of hyponormal operators on a Hilbert space \mathcal{H} then there exists a commuting pair (T_1, T_2) of contractions on \mathcal{H} such that $H_i = H_i^*T_i$ for each i = 1, 2.

Proof. Suppose that for $i = 1, 2, H_i$ is a hyponormal operator on \mathcal{H} . Then for each $x_i \in \mathcal{H}$, there is a unique $y_i \in \operatorname{cl}(\operatorname{ran} H_i)$ with

$$(1) H_i x_i = H_i^* y_i.$$

Write $T_i x_i = y_i$. Then T_i is a contraction on \mathcal{H} satisfying (cf. [2])

(2)
$$H_i = H_i^* T_i$$
 and $\operatorname{ran} T_i \subseteq \operatorname{cl} (\operatorname{ran} H_i)$ $(i = 1, 2)$.

We will show that $T_1T_2 = T_2T_1$ if (H_1, H_2) is a doubly commuting pair. Suppose (H_1, H_2) is a doubly commuting pair. By (2) we have

(3)
$$H_1H_2 = H_1H_2^*T_2 = H_2^*H_1T_2 = H_2^*H_1^*T_1T_2 = H_1^*H_2^*T_1T_2$$
$$H_2H_1 = H_2H_1^*T_1 = H_1^*H_2T_1 = H_1^*H_2^*T_2T_1,$$

which gives

(4)
$$H_1(H_2^*T_1T_2) = H_1^*(H_2^*T_2T_1).$$

We now claim that

(5)
$$H_2^*T_1T_2(\mathcal{H}) \subseteq \operatorname{cl}(\operatorname{ran} H_1)$$

and

(6)
$$H_2^*T_2T_1(\mathcal{H}) = H_2T_1(\mathcal{H}) \subseteq \operatorname{cl}(\operatorname{ran} H_1).$$

Indeed, we have, for each $x \in \mathcal{H}$

$$H_2^*T_1T_2x = H_2^*(\lim H_1y_n)$$
 with $\lim H_1y_n = T_1T_2x$ (by (2))
= $\lim H_2^*H_1y_n$
= $\lim H_1H_2^*y_n \in \operatorname{cl}(\operatorname{ran} H_1)$

A doubly commuting pair of hyponormal operators

and

$$H_2^*T_2T_1x = H_2T_1x$$

= $H_2(\lim H_1z_n)$ with $\lim H_1z_n = T_1x$
= $\lim H_2H_1z_n$
= $\lim H_1H_2z_n \in \operatorname{cl}(\operatorname{ran} H_1)$,

which gives (5) and (6). But since $\operatorname{cl}(\operatorname{ran} H_1) = (\ker H_1^*)^{\perp}$, it follows that

(7)
$$H_2^*T_1T_2 = H_2^*T_2T_1.$$

Next we will show that

(8)
$$T_2T_1(\mathcal{H}) \subseteq \operatorname{cl}(\operatorname{ran} H_2)$$
 and $T_1T_2(\mathcal{H}) \subseteq \operatorname{cl}(\operatorname{ran} H_2)$.

The first part of (8) follows at once from (2). For the second part of (8) suppose that for each $x \in \mathcal{H}$,

$$y := T_1 T_2 x = T_1 \left(\lim H_2 x_n \right)$$
 with $y \in \operatorname{cl}(\operatorname{ran} H_1)$,

where the second equality is guaranteed by (2). It now suffices to show that $y \in \operatorname{cl}(\operatorname{ran} H_2)$. Indeed we have

$$H_1^* y = H_1 \left(\lim H_2 x_n \right)$$
 (by (1))
= \lim H_1 H_2 x_n
= \lim H_2 H_1^* T_1 x_n
= H_1^* \left(\lim H_2 T_1 x_n \right).

Since by (6), $\lim H_2T_1x_n \in \operatorname{cl}(\operatorname{ran} H_1)$, it follows that $y = \lim H_2T_1x_n \in \operatorname{cl}(\operatorname{ran} H_2)$, which gives the second part of (8). By (7) and (8), we can conclude that $T_1T_2 = T_2T_1$.

Yong Tae Kim

REMARK 2. Even though H_1 and H_2 are commuting hyponormal operators, the product H_1H_2 need not be hyponormal: in fact, there exists a hyponormal operator whose square is not hyponormal (cf. [3, Solution 209]). However the equality (3) in the proof of Theorem 1 shows that if H_1 and H_2 are doubly commuting hyponormal operators then the product H_1H_2 is also hyponormal.

On the other hand Sz.-Nagy's theorem on the dilation theory is as follows (cf. [4]): Every contraction $T \in \mathcal{L}(\mathcal{H})$ has a dilation to an isometry V on $\ell_2(\mathcal{H})$ given by

$$V = egin{pmatrix} T & 0 & 0 & 0 & 0 & \dots \ D_T & 0 & 0 & 0 & 0 & \dots \ 0 & 1 & 0 & 0 & 0 & \dots \ 0 & 0 & 1 & 0 & 0 & \dots \ 0 & 0 & 0 & 1 & 0 & \dots \ 0 & 0 & 0 & 0 & 1 & \dots \ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

where $D_T = (I - T^*T)^{1/2}$. Ando's work, which applies to the case of two commuting contraction, is as follows (cf. [4]): Every pair of commuting contractions T_1, T_2 has a dilation to a pair of commuting isometries V_1, V_2 on $\ell_2(\mathcal{H})$. Thus we can have:

COROLLARY 3. If (H_1, H_2) is a doubly commuting pair of hyponormal operators on a Hilbert space \mathcal{H} then there exists a commuting pair (V_1, V_2) of isometries on $\ell_2(\mathcal{H})$ such that $H_i = H_i^* P_{\mathcal{H}} V_i |_{\mathcal{H}}$ (i = 1, 2), where $P_{\mathcal{H}}$ denotes the orthogonal projection from $\ell_2(\mathcal{H})$ onto \mathcal{H} .

Proof. This follows at once from Theorem 1 and the preceding remark. $\hfill\Box$

References

- [1] J. B. Conway, Subnormal Operators, Pitman, Boston, 1981.
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- [3] P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.

A doubly commuting pair of hyponormal operators

[4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert spaces, Acadèmiai Kiad ò-North Holland, Budapest, 1955.

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea

E-mail: ytkim@yurim.skku.ac.kr