FUGLEDE-PUTNAM THEOREM FOR $p ext{-HYPONORMAL}$ OR CLASS $\mathcal Y$ OPERATORS

Salah Mecheri¹, Kôtarô Tanahashi², and Atsushi Uchiyama

ABSTRACT. We say operators A,B on Hilbert space satisfy Fuglede-Putnam theorem if AX = XB for some X implies $A^*X = XB^*$. We show that if either (1) A is p-hyponormal and B^* is a class $\mathcal Y$ operator or (2) A is a class $\mathcal Y$ operator and B^* is p-hyponormal, then A,B satisfy Fuglede-Putnam theorem.

1. Introduction

Our aim is to extend the Fuglede-Putnam theorem ([4], [7]). Let \mathcal{H}, \mathcal{K} be complex Hilbert spaces and $B(\mathcal{H}), B(\mathcal{K})$ the algebras of all bounded linear operators on \mathcal{H}, \mathcal{K} . The familiar Fuglede-Putnam theorem is as follows:

THEOREM 1 (Fuglede-Putnam [4], [7]). If $A \in B(\mathcal{H}), B \in B(\mathcal{K})$ be normal and AX = XB for some $X \in B(\mathcal{K}, \mathcal{H})$, then $A^*X = XB^*$.

Many authors have extented this theorem for several classes of operators, for examples [3], [5], [6], [10], [13], [15], [17]. We say operators A, B satisfy Fuglede-Putnam theorem if AX = XB implies $A^*X = XB^*$. The aim of this paper is to show that if either (1) A is p-hyponormal and B^* is a class $\mathcal Y$ operator or (2) A is a class $\mathcal Y$ operator and B^* is p-hyponormal, then A, B satisfy Fuglede-Putnam theorem. We remark that B. P. Duggal [3] proved if A, B^* are p-hyponormal operators, then A, B satisfy Fugled-Putnam theorem, and A. Uchiyama and A. Yoshino [15] proved if A, B^* are class $\mathcal Y$ operators, then A, B satisfy Fugled-Putnam theorem.

Received June 21, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 47B20.

Key words and phrases: p-hyponormal operator, class \mathcal{Y} , Fuglede-Putnam theorem.

¹ This research was supported by research center Project No. 2005-04.

² This research was supported by Grant-in-Aid Research No. 15540180.

An operator $A \in B(\mathcal{H})$ is said to be p-hyponormal if $(A^*A)^p \geq (AA^*)^p$, where p > 0. This definition is due to Aluthge [1] and many authors studied interesting properties of p-hyponormal operators by using Aluthge transform (see [1], [6]). A is said to be a class \mathcal{Y}_{α} operator for $\alpha \geq 1$ (or $A \in \mathcal{Y}_{\alpha}$) if there exists a positive number k_{α} such that

$$|AA^* - A^*A|^{\alpha} \le k_{\alpha}^2 (A - \lambda)^* (A - \lambda)$$
 for all $\lambda \in \mathbb{C}$.

It is known that $\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\beta}$ if $1 \leq \alpha \leq \beta$. Let $\mathcal{Y} = \bigcup_{1 \leq \alpha} \mathcal{Y}_{\alpha}$. We remark that a class \mathcal{Y}_1 operator A is M-hyponormal, i.e., there exists a positive number M such that

$$(A - \lambda)(A - \lambda)^* \le M^2(A - \lambda)^*(A - \lambda)$$
 for all $\lambda \in \mathbb{C}$,

and M-hyponormal operators are class \mathcal{Y}_2 operators (see [15]). A is said to be dominant if for any $\lambda \in \mathbb{C}$ there exists a positive number M_{λ} such that

$$(A - \lambda)(A - \lambda)^* < M_1^2(A - \lambda)^*(A - \lambda).$$

It is obvious that M-hyponormal operators are dominant, but the converse does not hold. Let $\{f_n\}_{n=-\infty}^{\infty}$ be an orthonormal basis for \mathcal{H} . Define $Tf_n=2^{-|n|}f_{n+1}$. It is known that T is a dominant operator which is not a class \mathcal{Y} operator. (Hence T is not M-hyponormal.) We remark T is not p-hyponormal, as $\langle (T^*T)^p f_1, f_1 \rangle = 4^{-p} < 1 = \langle (TT^*)^p f_1, f_1 \rangle$ (see [11], [15]). Let $\{f_n\}_{n=1}^{\infty}$ be an orthonormal basis for a Hilbert space \mathcal{H} . Define $Sf_1=f_2, Sf_2=2f_3, Sf_n=f_{n+1}$ for $n=3,4,\ldots$ Wadhwa [16] proved S is M-hyponormal, hence S is a class \mathcal{Y} operator. But S is not p-hyponormal for any 0 < p, as $\langle (S^*S)^p f_3, f_3 \rangle = 1 < 2^p = \langle (SS^*)^p f_3, f_3 \rangle$. However it is not known that there exists a p-hyponormal operator which is not a class \mathcal{Y} operator. Also, it is not known that there exists a class \mathcal{Y} operator which is not dominant.

2. Results

We will recall some known results which will be used in the sequel.

LEMMA 2. (Uchiyama and Yoshino [15]) Let $A \in B(\mathcal{H})$ be a class \mathcal{Y} operator and $\mathcal{M} \subset \mathcal{H}$ invariant under A. If $A|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces A.

LEMMA 3 (Uchiyama [14]). Let $A \in B(\mathcal{H})$ be p-hyponormal and $\mathcal{M} \subset \mathcal{H}$ be invariant under A. If $A|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces A.

LEMMA 4 (Stampfli and Wadhwa [11]). Let $A \in B(\mathcal{H})$ be dominant. Let $\delta \subset \mathbb{C}$ be closed. If there exists a bounded function $f: \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(A - \lambda)f(\lambda) = x \neq 0$ for some $x \in \mathcal{H}$, then there exists an analytic function $g: \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(A - \lambda)g(\lambda) = x$.

REMARK. In [11], the authors assert f is analytic. But they use Putnam's result [9], i.e., if $A = \int \lambda dE(\lambda)$ is normal, then

$$\bigcap \{ (A - \lambda)\mathcal{H} | \lambda \in \mathbb{C} \setminus \delta \} = E(\delta)\mathcal{H}$$

$$= \{x \in \mathcal{H} | \exists \text{ analytic } g : \mathbb{C} \setminus \delta \to \mathcal{H} \text{ such that } (A - \lambda)g(\lambda) = x \}.$$

Hence we must substitute a bounded function f by an analytic function g. If A is pure, i.e., A has no-nonzero reducing subspace \mathcal{M} such that $A|_{\mathcal{M}}$ is normal, then $\ker A = \{0\}$ as $\ker A \subset \ker A^*$. Hence f = g. This is pointed by Professor F. Hiai.

The following result is due to Takahashi [12]. We denote by [ran A] the closure of the range of A.

LEMMA 5 (Takahashi [12]). Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$. Then the following assertions are equivalent.

- (1) A, B satisfy Fugled-Putnam theorem.
- (2) If AC = CB for some operator $C \in B(\mathcal{K}, \mathcal{H})$, then [ran C] reduces A, $(\ker C)^{\perp}$ reduces B, and $A|_{[\operatorname{ran} C]}, B|_{(\ker C)^{\perp}}$ are normal.

REMARK. In (2), $C_1: (\ker C)^{\perp} \ni x \to Cx \in [\operatorname{ran} C]$ is a quasi-affinity (i.e., C_1 is injective and has dense range) such that $A|_{[\operatorname{ran} C]}C_1 = C_1B|_{(\ker C)^{\perp}}$. Then $A|_{[\operatorname{ran} C]}, B|_{(\ker C)^{\perp}}$ are unitarily equivalent normal operators by a corollary of the Fuglede-Putnam theorem (see Theorem 1.6.4 of [8] and its proof).

LEMMA 6. Let $A \in B(\mathcal{H})$ be an injective p-hyponormal operator and $B^* \in B(\mathcal{K})$ be a class \mathcal{Y} operator. If AC = CB for some operator $C \in B(\mathcal{K}, \mathcal{H})$, then $A^*C = CB^*$. Moreover, [ran C] reduces A, (ker C) reduces B, and $A|_{[\operatorname{ran} C]}, B|_{(\ker C)^{\perp}}$ are unitarily equivalent normal operators.

Proof. (Case $1/2 \le p \le 1$) Since B^* is class \mathcal{Y} , there exist positive numbers α and k_{α} such that

$$|BB^* - B^*B|^{\alpha} \le k_{\alpha}^2 (B - \lambda)(B - \lambda)^*$$
 for all $\lambda \in \mathbb{C}$.

Hence for $x\in |BB^*-B^*B|^{\alpha/2}\mathcal{K}$ there exists a bounded function $f:\mathbb{C}\to\mathcal{K}$ such that

$$(B-\lambda)f(\lambda) = x$$
 for all $\lambda \in \mathbb{C}$

by [2]. Let A = U|A| be the polar decomposition of A and define its Aluthge transform by $\tilde{A} = |A|^{1/2}U|A|^{1/2}$. Then \tilde{A} is hyponormal by [1] (the author assumed U is unitary, however this assumption is not necessary.) Then

$$(\tilde{A} - \lambda)|A|^{1/2}Cf(\lambda) = |A|^{1/2}(A - \lambda)Cf(\lambda)$$
$$= |A|^{1/2}C(B - \lambda)f(\lambda) = |A|^{1/2}Cx$$

for all $\lambda \in \mathbb{C}$.

We assert $|A|^{1/2}Cx=0$. Because if $|A|^{1/2}Cx\neq 0$, there exists an analytic function $g:\mathbb{C}\to\mathcal{H}$ such that $(\tilde{A}-\lambda)g(\lambda)=|A|^{1/2}Cx$ by Lemma 4. Since

$$g(\lambda) = (\tilde{A} - \lambda)^{-1} |A|^{1/2} Cx \to 0 \text{ as } \lambda \to \infty,$$

we have $g(\lambda) = 0$, and hence $|A|^{1/2}Cx = 0$. This is a contradiction. Then

$$|A|^{1/2}C|BB^* - B^*B|^{\alpha/2}\mathcal{K} = \{0\}.$$

Since $\ker A = \ker |A| = \{0\}$, we have

$$C(BB^* - B^*B) = 0.$$

Since [ran C] is invariant under A and $(\ker C)^{\perp}$ is invariant under B^* , we can write

$$A = \begin{pmatrix} A_1 & S \\ 0 & A_2 \end{pmatrix} \text{ on } \mathcal{H} = [\operatorname{ran} C] \oplus [\operatorname{ran} C]^{\perp},$$

$$B = \begin{pmatrix} B_1 & 0 \\ T & B_2 \end{pmatrix} \text{ on } \mathcal{K} = (\ker C)^{\perp} \oplus (\ker C),$$

$$C = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix} : (\ker C)^{\perp} \oplus (\ker C) \to [\operatorname{ran} C] \oplus [\operatorname{ran} C]^{\perp}.$$

Then

$$0 = C(BB^* - B^*B)$$

$$= \begin{pmatrix} C_1(B_1B_1^* - B_1^*B_1 - T^*T) & C_1(B_1T^* - T^*B_2) \\ 0 & 0 \end{pmatrix}$$

and

$$C_1(B_1B_1^* - B_1^*B_1 - T^*T) = 0.$$

Since C_1 is injective and has dense range,

$$B_1 B_1^* - B_1^* B_1 - T^* T = 0$$

and

$$B_1 B_1^* = B_1^* B_1 + T^* T \ge B_1^* B_1.$$

This implies B_1^* is hyponormal. Since AC = CB, we have

$$A_1C_1 = C_1B_1$$

where A_1 is p-hyponormal by [14]. Hence A_1, B_1 are normal and

$$A_1^*C_1 = C_1B_1^*$$

by [3]. Then S=0 by Lemma 3 and T=0 by Lemma 2. Hence

$$A^*C = \begin{pmatrix} A_1^*C_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} C_1B_1^* & 0 \\ 0 & 0 \end{pmatrix} = CB^*.$$

Hence $A|_{[\operatorname{ran}\ C]}, B|_{(\ker C)^{\perp}}$ are normal by Lemma 5 and unitarily equivalent by its remark.

(Case 0) Let <math>A = U|A| be the polar decomposition of A and define its Aluthge transform by $\tilde{A} = |A|^{1/2}U|A|^{1/2}$. Then \tilde{A} is (p+1/2)-hyponormal by [1] and

$$\tilde{A}|A|^{1/2}C = |A|^{1/2}AC = |A|^{1/2}CB.$$

Let $\tilde{A} = V|\tilde{A}|$ be the polar decomposition and $\hat{A} = |\tilde{A}|^{1/2}V|\tilde{A}|^{1/2}$. Then \hat{A} is hyponormal and

$$\hat{A}|\tilde{A}|^{1/2}|A|^{1/2}C = |\tilde{A}|^{1/2}|A|^{1/2}CB.$$

Since $\sigma_p(\tilde{A}) = \sigma_p(A) = \emptyset$, we have $C(BB^* - B^*B) = 0$ by an similar arguments in the case $1/2 \le p \le 1$. The rest is the same to the case $1/2 \le p \le 1$.

THEOREM 7. Let $A \in B(\mathcal{H})$ and $B^* \in B(\mathcal{K})$. If either (1) A is p-hyponormal and B^* is a class \mathcal{Y} operator or (2) A is a class \mathcal{Y} operator and B^* is p-hyponormal, then AC = CB for some operator $C \in B(\mathcal{K}, \mathcal{H})$ implies $A^*C = CB^*$. Moreover, [ran C] reduces A, (ker C) $^{\perp}$ reduces B, and $A|_{[\operatorname{ran } C]}, B|_{(\ker C)^{\perp}}$ are unitarily equivalent normal operators.

Proof. (1). Decompose A into normal part A_1 and pure part A_2 as

$$A = A_1 \oplus A_2$$
 on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$,

and write

$$C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} : \mathcal{K} \to \mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2.$$

Since $\ker A_2 \subset \ker A_2^*$ and A_2 is pure, A_2 is injective. AC = CB implies

$$\begin{pmatrix} A_1C_1 \\ A_2C_2 \end{pmatrix} = \begin{pmatrix} C_1B \\ C_2B \end{pmatrix}.$$

Hence

$$A^*C = \begin{pmatrix} A_1^*C_1 \\ A_2^*C_2 \end{pmatrix} = \begin{pmatrix} C_1B^* \\ C_2B^* \end{pmatrix} = CB^*$$

by [3] and Lemma 6. The rest follows from Lemma 5 and its remark.

(2). Since AC = CB, we have $B^*C^* = C^*A^*$. Hence $BC^* = B^{**}C^* = C^*A^{**} = C^*A$ by (1) and $A^*C = CB^*$. The rest follows from Lemma 5 and its remark.

ACKNOWLEDGEMENT. The authors would like to express their thanks to the referee for his helpful comments.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory 13 (1990), no. 3, 307–315.
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [3] B. P. Duggal, *Quasi-similar p-hyponormal operators*, Integral Equations Operator Theory **26** (1996), no. 3, 338–345.
- [4] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 35-40.
- [5] I. H. Jeon, K. Tanahashi, and A. Uchiyama, On Quasisimilarity for loghyponormal operators, Glasg. Math. J. 46 (2004), no. 1, 169–176.
- [6] S. M. Patel, On Intertwining p-hyponormal operators, Indian J. Math. 38 (1996), no. 3, 287–290.
- [7] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357-362.
- [8] ______, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [9] _____, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33-36.
- [10] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359–365.
- [11] ______, On dominant operators, Monatsh. Math. 84 (1977), no. 2, 143–153.
- [12] K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged) 43 (1981), no. 1-2, 123-125.
- [13] A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasg. Math. J. 44 (2002), no. 3, 397-410.
- [14] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), no. 2, 221–230.
- [15] A. Uchiyama and T. Yoshino, On the class Y operators, Nihonkai Math. J. 8 (1997), 179–194.
- [16] B. L. Wadhwa, M-hyponormal operators, Duke Math. J. 41 (1974), 655–660.
- [17] T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), no. 4, 571-572.

SALAH MECHERI, DEPARTMENT OF MATHEMATICS, KING SAUD UNIVERSITY, COLLEGE OF SCIENCE, P.O.BOX 2455, RIYADH 11451, SAUDI ARABIA *E-mail*: mecherisalah@hotmail.com

KÔTARÔ TANAHASHI, DEPARTMENT OF MATHEMATICS, TOHOKU PHARMACEUTICAL UNIVERSITY, SENDAI 981-8558, JAPAN *E-mail*: tanahasi@tohoku-pharm.ac.jp

Atsushi Uchiyama, Sendai National College of Technology, Sendai 989-3128, Japan

 $\hbox{\it E-mail: uchiyama@cc.sendai-ct.ac.jp}$