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Abstract. We investigate the gaps among classes of weakly hyponormal composition

operators induced by Embry characterization for the subnormality. The relationship be-

tween subnormality and weak hyponormality will be discussed in a version of composition

operator induced by a non-singular measurable transformation.

1. Introduction and preliminaries

Let H be a separable infinite dimensional complex Hilbert space and let L(H)
be the algebra of all bounded linear operators on H. An operator A in L(H) is
normal if A∗A = AA∗. An operator A is subnormal if A is the restriction of a
normal operator to an invariant subspace. In [5], the Bram-Halmos criterion states
that an operator A is subnormal if and only if

∑
i,j=0

⟨
Aifj , A

jfi
⟩
≥ 0 for all

{fi}ni=0 in H and any n ∈ N. Another well-known condition for the subnormal-
ity is Embry criterion which states that an operator A is subnormal if and only if∑n

i,j=0

⟨
Ai+jfi, A

i+jfj
⟩
≥ 0 for all {fi}ni=0 in H and any n ∈ N ([6]). Recall that A

is n-hyponormal if
∑n

i,j=0

⟨
Aifj , A

jfi
⟩
≥ 0 for all {fi}ni=1 in H ([5], [8], [9], [10]).

Recall that an operator A is E(n)-hyponormal if
∑n

i,j=0

⟨
Ai+jfi, A

i+jfj
⟩

≥ 0
for any f0, f1, · · · , fn in H([7]). Note that E(n)-hyponormality is weaker than
n-hyponormality. In [7], E(n)-hyponormality was discussed as a bridge between
subnormality and weak hyponormalities in L(H).

In this note, we discuss E(n)-hyponormality for composition operators induced
by a non-singular measurable transformation which is applied to being distinct the
classes of E(n)-hyponormality. In Section 2, we show that the subnormality and
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E(n)-hyponormality are equivalent under the composition operators. In Section 3,
we consider some examples which distinct the classes of E(n)-hyponormal operators
for each positive integer n. Some of calculations in Section 3 are obtained through-
out computer experiments using software tool Mathematica [11].

2. Relationship between subnormality and E(n)-hyponormality

We now introduce definitions and well-known facts in reference [5] and [3] which
provide good materials for our work.

Basic Properties(BP) (i) Put an 2× 2-operator matrix of Ã :=

(
A b
b∗ c

)
, where

A ∈ Mn(C), b ∈ Cn and c ∈ C. If A ≥ 0 and rank Ã = rank A, then Ã ≥ 0.

(ii) Let A = (aij)
∞
i,j=0 be an infinite Hermitian matrix and let Ak be the trunca-

tion of A to the first (k+1) rows and columns. Assume that A ≥ 0 and detAk = 0
for some k. Then detAl = 0 for all l ≥ k.

(iii) For Ã ∈ Mn+1(C) and 1 ≤ k ≤ n, let Ãk ∈ Mk(C) be the truncation of

Ã. If det(Ãk) > 0 for 1 ≤ k ≤ n and det(Ã) ≥ 0, then Ã ≥ 0. (This is called the
Nested Determinants Test.)

(iv) Let (X,F , µ) be a σ-finite measure space and let T be a non-singular
measurable transformation T : X → X (i.e., µ◦T−1 ≪ µ, T−1F ⊂ F). Then there

exist the (first) Radon-Nikodym derivative h =
dµ ◦ T−1

dµ
and the n-th Radon-

Nikodym derivative, hn ≡ dµ ◦ T−n

dµ
(n ≥ 1). And it holds that

∫
T−1A

f ◦ T dµ =∫
A
h · f dµ.

(v) The composition operator CT : L2(X,F , µ) → L2(X,F , µ) is defined by
CT f = f ◦ T for all f ∈ L2(X,F , µ). We assume that CT is continuous (i.e.,

∥CT ∥ = ∥h∥1/2∞ < ∞).

Let F be the σ-algebra by all subsets of N0 = N ∪ {0}. For l ∈ N, we consider
a point mass measure µl on N0 determined as follows:

1, 1, · · · , 1︸ ︷︷ ︸
(l+1)

, c1, c2, · · · , cl, (c1)2, (c2)2, · · · , (cl)2, (c1)3, · · · , (cl)3, (c1)4, · · ·

with ci > 0 (i = 1, · · · , l). Let (N0,F , µl) be the σ-finite measure space as above.
Define a measurable non-singular transformation Tl on N0 by Tl(k) = 0 for k =
0, 1, 2, · · · , l and Tl(k) = k − l for k ≥ l + 1.

Proposition 2.1. For a fixed number l ∈ N, let transformation Tl and measure µl

be defined as above. Then the n-th Radon-Nikodym derivatives hn(k) with h0(k) ≡ 1,
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n ≥ 1, k ∈ N0 are expressed by the followings;

hn(0) = 1 +
∑

1≤j≤l

cnj − 1

cj − 1
, hn(k) = (cr)

n for k = l · q + r, q ≥ 0 and r = 1, · · · , l.

Proof. For each n ≥ 1, we show that the σ-algebra T−nF is generated by the
sets {0, 1, 2, · · · , nl}, {nl + 1}, {nl + 2}, · · · . It follows from the definition of n-th
Radon-Nikodym derivatives hn(k) that

hn(0) =
µ ◦ T−n(0)

µ(0)
= µ({0, 1, 2, · · · , nl}) = 1 +

∑
1≤j≤l

cnj − 1

cj − 1
.

On the other hand, for k ̸= 0, we write k = lq + r for q ≥ 0 and r = 1, 2, · · · , l. So
T−n(k) = nl + k and µ ◦ T−n(k) = µ({nl + k}) = cn+q

r . Hence

hn(k) =
µ ◦ T−n(k)

µ(k)
=

cn+q
r

cqr
= cnr

for all n, k ≥ 1. Hence the proof is complete. �
For positive integers m and n, we set

J (m)
n = {(j1, · · · , jn) : 1 ≤ j1 < j2 < · · · < jn ≤ m, ji ∈ N}

with J
(m)
n = ∅ for n > m. We denote for (j1, · · · , jn) ∈ J

(m)
n and n ≥ 1,

cj1,··· ,jn ≡
∏n

i=1 cji .

Lemma 2.2. For l ∈ N, let dn = 1 +
∑

1≤j≤l

cnj − 1

cj − 1
(n ≥ 1) with d0 = 1.

Then {vi,vi+1, · · · ,vi+l+1} is linearly dependent for all i ∈ N0 where vi =
(di, di+1, · · · , di+l+1) ∈ Cl+2 for all i ∈ N0. In particular, the infinite matrix with
row vectors vi,vi+1, · · · ,vi+l+1 (i ≥ 0) has rank l + 1.

Proof. For simple notations, we write Ji := J
(l)
i for all i = 2, 3, · · · , l − 1. Put

a0 = (−1)l
∏

1≤j≤l

cj , a1 = (−1)l−1

( ∏
1≤j≤l

cj +
∑

(j1,··· ,jl−1)∈Jl−1

cj1,··· ,jl−1

)
,

a2 = (−1)l−2

( ∑
(j1,··· ,jl−1)∈Jl−1

cj1,··· ,jl−1
+

∑
(j1,··· ,jl−2)∈Jl−2

cj1,··· ,jl−2

)
, · · · ,

al−1 = (−1)1
( ∑

(j1,j2)∈J2

cj1,j2 +
∑

1≤j≤l

cj

)
, al =

∑
1≤j≤l

cj + 1.

For simple calculations, we can obtain that
∑

0≤j≤l ajdj+i = di+l+1 for all i ∈ N0.
Hence the set {vi,vi+1, · · · ,vi+l+1} is linearly dependent for all i ∈ N0. �
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For a σ-finite measure space (X,F , µ), it follows from [7] that the composition
operator CT on the space L2(X,F , µ) is E(n)-hyponormal for a positive integer n if
and only if the (n+1)× (n+1) matrix (hi+j(x))

n
i,j=0 ≥ 0 for almost all x ∈ X with

respect to µ, where hn(x) is the n-th Radon-Nikodym derivative with h0(x) ≡ 1.
Then we obtain the following theorem.

Theorem 2.3. For l ∈ N, let CTl
be a composition operator on the space

L2(N0,F , µl). Then CTl
is E(l)-hyponormal if and only if CTl

is subnormal.

Proof. Let l ∈ N. According to the remark above this theorem, we obtain that
the composition operator CTl

is E(l)-hyponormal if and only if the (l+1)× (l+1)
matrix (hi+j(k))

l
i,j=0 ≥ 0 for almost all k, where hn(k) is n-th Radon-Nikodym

derivatives. For the case k ̸= 0, using the Proposition 2.1, we see that each column
vectors of the infinite matrix (hi+j(k))

∞
i,j=0 is linearly dependent and its rank is 1.

So from BP(i), we have that the infinite matrix (hi+j(k))
∞
i,j=0 ≥ 0. Hence CTl

is
subnormal.

Finally we only show the result for the case k = 0. For brevity, we write
hn := hn(0) for all n ≥ 1 and h0 = 1. By Proposition 2.1 and Lemma 2.2, we
see that the (l + 1) × (l + 1) matrix (hi+j)

l
i,j=0 has rank l + 1. And by BP(i),

rank (hi+j)
l
i,j=0 = l + 1 = rank (hi+j)

n
i,j=0 for all n ≥ l + 1. Also, from the condi-

tion (hi+j)
l
i,j=0 ≥ 0, we can obtain that (hi+j)

n
i,j=0 ≥ 0 for all n ≥ 1. Hence the

composition operator CTl
is subnormal. The converse implication is obvious. �

Corollary 2.4. For l ∈ N, let CTl
be a composition operator on the space

L2(N0,F , µl). Then CTl
is E(l)-hyponormal if and only if CTl

is l-hyponormal.

Proof. We note that n-hyponormality implies E(n)-hyponormality for each n ∈ N.
From Theorem 2.3, we can have the assertion. �

In addition, we show formulae of determinants for the matrix (hi+j)
n
i,j=0 (n ≥ 1)

in the following proposition.

Proposition 2.5. For l ∈ N, we have that

det(hi+j(0))
n
i,j=0 =

{ ∏
(j1,j2)∈J

(l)
2
(cj1 − cj2)

2 ·Dl for n = l,

0 for n ≥ l + 1,

where

Dl =

l∑
r=0

(−1)l−r(l + 1− r)
∑

(i1,··· ,ir)∈J
(l)
r

ci1,··· ,ir .

In particular, det(hi+j(k))
n
i,j=0 = 0 for all k ̸= 0 and n ≥ 1.

Proof. From the Proposition 2.1 and Lemma 2.2, we can obtain the result. �

Remark 2.6. From Theorem 2.3 and Proposition 2.5, we can see that the matrix
(hi+j(k))

n
i,j=0 ≥ 0 for all k ∈ N and n ≥ 1. i.e., the composition operator CTl

is
always subnormal.
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3. Distinctions of E(n)-hyponormalities

In our constructed model, we want to show the distinctions of E(n)-hyponormal-
ities for each n ∈ N. Owing to Theorem 2.3, we can see that disjointness of E(n)-
hyponormal operators comes from only cases n = 1, 2, · · · , l for the given positive
integer number l. So we show that the gaps between E(n)-hyponormal operators
step by step for given number n.

3.1. E(1)-hyponormal but not E(2)-hyponormal. For k ∈ N0 and n = 1, 2,
we set

RE(2, n) = {(c1, c2) : CT2 is E(n)-hyponormal}

and

RD(2, n) = {(c1, c2) : det∆i > 0 (i = 1, · · · , n− 1) and det∆n ≥ 0},

where ∆l = (hi+j(0))
l
i,j=0 for l = 1, 2, · · · . Then we can obtain that RE(2, n) =

RD(2, n), n = 1, 2. In fact, from BP(iii), we have that RD(2, n) ⊂ RE(2, n). To
show the reverse implication, let (c1, c2) ∈ RE(2, n), i.e., ∆n ≥ 0 for all k ∈ N0 and
n = 1, 2, · · · . Suppose that there exists (α1, α2) such that det∆1 = c1 + c2 − 6 = 0
for c1 > 0 and c2 > 0. Since det∆2 = (c1 − c2)

2(3 − 2c1 − 2c2 + c1c2), if we put
f(c1, c2) := 3 − 2c1 − 2c2 + c1c2, then we can have that f(α1, α2) < 0, which is
contradicts to ∆2 ≥ 0. Hence we have the following assertions;

CT2
is E(1)-hyponormal ⇐⇒ c1 + c2 − 6 ≥ 0 for c1 > 0, c2 > 0

and

CT2 is E(2)-hyponormal ⇐⇒ 3− 2c1 − 2c2 + c1c2 ≥ 0 for c1 > 0, c2 > 0.

Remark 3.1. More specially, to see the gaps between E(n)-hyponormalities for
n = 1, 2, in R1, we restrict d = 2c with the positive number c. Put

Ii = {c > 0 : CT2 = E(i)-hyponormal}

for i = 1, 2. Then we have two intervals, I2 = [α,∞)  I1 = [2,∞), where

α = 3+
√
3

2 .

3.2. E(2)-hyponormal but not E(3)-hyponormal. From now on, because of
conveniences of calculations, we will look for the gaps in R1 about the classes of
E(n)-hyponormal composition operators for each positive integer n. Put each point
mass cj = j ·c for j = 1, 2, · · · , l for a positive number c. For k ∈ N0 and n = 1, 2, 3,
we set RE(3, n) = {c > 0 : ∆n ≥ 0} and

RD(3, n) = {c > 0 : det∆i > 0 (i = 1, · · · , n− 1) and det∆n ≥ 0},

where ∆n = (hi+j(0))
n
i,j=0. Then we can obtain that RE(3, n) = RD(3, n) for n =

1, 2, 3. Indeed, from simple calculations, det∆1 = 6(c− 2) and det∆2 = 4c2(5c2 −
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15c+6) = 0 for c > 0. Suppose that there exists α0 ≥ 2 such that 5c2−15c+6 = 0.
Since det∆3 = 8c6(−2 + 9c − 11c2 + 3c3), if we put f(c) := −2 + 9c − 11c2 + 3c3,

then we can have that f(α0) = −3α0

5
+

2

5
< 0 (because α0 ≥ 2), which contradicts

to ∆3 ≥ 0. If we denote an interval In = {c > 0 : CT3 is E(n)-hyponormal} for
n = 1, 2, 3, then we have the following relationships for E(n)-hyponormalities,

I3 = [α3,∞) ( I2 = [α2,∞) ( I1 = [2,∞),

where α2 ≈ 2.525, α3 ≈ 2.618.

3.3. Algorithm. Throughout previous examples, we provide the following algo-
rithm giving the distinctions of E(n)-hyponormalities for a fixed integer l ≥ 3 and
a constant c > 0.

I. Set a matrix Ω = (hi+j)
∞
i,j=0, where each hm := hm(0) is the same as in

Proposition 2.1.

II. Compute the determinants of matrices Ωk for k = 1, 2, · · · , l. Put dk(c) =

detΩk for k = 1, 2, · · · , l. Then d1(c) =
l(l + 1)

2
(c− 2). So we take α1(≡ c) > 2.

III. Find polynomial remainder Rk(c) of dk(c),

dk(c) = (
∑

1≤j≤l

j2k−1)c2k−1dk−1(c) +Rk(c), 2 ≤ k ≤ l.

IV. For each αk−1 > 2, 2 ≤ k ≤ l, check Rk(αk−1) < 0, where αk−1 is the
greatest root of dk−1(c) = 0.

V. Find E(l, n) = {c > 0 : dk > 0, dn ≥ 0, 1 ≤ k ≤ n− 1} for n = 1, 2, · · · , l.

3.4. Some estimations. Using Algorithm, we can obtain mutually disjoint values
α1, α2, · · · , αl satisfying αn ∈ E(l, n) (n = 1, · · · , l) for some low numbers per-
mitted by computer estimations, which means that the classes of E(n)-hyponormal
operators are distinct, i.e., E(l, n− 1)\E(l, n) = [αn−1, αn) for such low numbers.

For examples, we give the numerical values αl−1 and αl in the Table 3.1 which
show the distinct classes of E(n)-hyponormal operators for 1 ≤ n ≤ l, 2 ≤ l ≤ 10,
where the values of αi are approximated ones.

l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10
αl−1 2 2.525 2.789 2.965 3.105 3.2226 3.3264 3.419313 3.5035871
αl 2.366 2.618 2.812 2.971 3.106 3.2229 3.3265 3.419336 3.5035923

Table 3.1
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