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ABSTRACT. We investigate the gaps among classes of weakly hyponormal composition
operators induced by Embry characterization for the subnormality. The relationship be-
tween subnormality and weak hyponormality will be discussed in a version of composition
operator induced by a non-singular measurable transformation.

1. Introduction and preliminaries

Let H be a separable infinite dimensional complex Hilbert space and let £(H)
be the algebra of all bounded linear operators on H. An operator A in L£(H) is
normal if A*A = AA*. An operator A is subnormal if A is the restriction of a
normal operator to an invariant subspace. In [5], the Bram-Halmos criterion states
that an operator A is subnormal if and only if 3, ;_, (A’f;, A7f;) > 0 for all
{fi}—y in H and any n € N. Another well-known condition for the subnormal-
ity is Embry criterion which states that an operator A is subnormal if and only if
S0 (AT fi, AT f3) > 0 for all {f;}7, in H and any n € N ([6]). Recall that A
is n-hyponormal if Z?,j:o (Aif;, AV fi)y > 0 for all {f;}7, in H ([5],[8],[9], [10]).
Recall that an operator A is E(n)-hyponormal if sz:o (AT AT f)y >0
for any fo, f1, -+, fn in H([7]). Note that E(n)-hyponormality is weaker than
n-hyponormality. In [7], E(n)-hyponormality was discussed as a bridge between
subnormality and weak hyponormalities in £(H).

In this note, we discuss E(n)-hyponormality for composition operators induced
by a non-singular measurable transformation which is applied to being distinct the
classes of F(n)-hyponormality. In Section 2, we show that the subnormality and
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E(n)-hyponormality are equivalent under the composition operators. In Section 3,
we consider some examples which distinct the classes of E(n)-hyponormal operators
for each positive integer n. Some of calculations in Section 3 are obtained through-
out computer experiments using software tool Mathematica [11].

2. Relationship between subnormality and F(n)-hyponormality

We now introduce definitions and well-known facts in reference [5] and [3] which
provide good materials for our work.

Basic Properties(BP) (i) Put an 2 x 2-operator matrix of A= (g{* lc)), where

Ae M,(C),beC*and ceC. If A >0 and rank A = rank A, then A > 0.

(ii) Let A = (ai;)75—¢ be an infinite Hermitian matrix and let Ay be the trunca-
tion of A to the first (k+ 1) rows and columns. Assume that A > 0 and det A, =0
for some k. Then det A; =0 for all { > k.

(i) For A € My;1(C) and 1 < k < n, let A, € M (C) be the truncation of
A. Tf det(Ag) > 0 for 1 < k < n and det(A) > 0, then A > 0. (This is called the
Nested Determinants Test.)

(iv) Let (X,F,u) be a o-finite measure space and let T be a non-singular
measurable transformation T': X — X (i.e., uoT~! < p, T=1F C F). Then there

. . . dpoT™1

exist the (first) Radon-Nikodym derivative h = ———— and the n-th Radon-
. . _dpoT™" .

Nikodym derivative, h,, = T (n >1). And it holds that [, ., foT du =

Juh-f du.

(v) The composition operator Cr : L?(X,F,u) — L*(X,F,u) is defined by
Crf = foT for all f € L?(X,F,u). We assume that Cr is continuous (i.e.,
1/2
[Crll = lIAfla* < o0).
Let F be the o-algebra by all subsets of Ng = NU {0}. For I € N, we consider

a point mass measure u; on Ny determined as follows:

17 13 T 717 C1,C2, " ,Cl, (01)27 (02)27 Tty (Cl)ga (01)35 Ty (01)37 (01)47 T
———
(+1)
with ¢; >0 (i = 1,---,1). Let (No,F, ;) be the o-finite measure space as above.

Define a measurable non-singular transformation 7; on Ny by Tj(k) = 0 for k =
0,1,2,---,land Ty(k) =k —lfor k > 1+ 1.

Proposition 2.1. For a fized number | € N, let transformation T; and measure
be defined as above. Then the n-th Radon-Nikodym derivatives hy (k) with ho(k) =1,
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n > 1, k € Ny are expressed by the followings;

n_
c; 1

ha(0) =1+ > 2 .

i _
1<g<t Y

Jho(k) = (¢)" fork=1-q+r, ¢>0andr=1,---,L

Proof. For each n > 1, we show that the o-algebra T~ "F is generated by the
sets {0,1,2,--- ,nl}, {nl+ 1}, {nl + 2}, ---. It follows from the definition of n-th
Radon-Nikodym derivatives h,, (k) that

poT="(0) =1
hn(0) = ———<— = p({0,1,2,--- ,nl}) =1+ :
1(0) 1%;1 ¢j—1
On the other hand, for k& # 0, we write k =Ilqg+r for ¢ >0 and r =1,2,--- ,I. So
T-"(k) =nl+kand po T "(k) = u({nl + k}) = c*T7. Hence

poT—"(k)  arte

for all n, k£ > 1. Hence the proof is complete. O

n
a

For positive integers m and n, we set

JI = {1, 1 dn) 1< j1 <o <+ <jn <m, ji €N}

with JU™ = @ for n > m. We denote for (J1, -+ ,Jn) € J™ and n > 1,
th... Jn = H:-L:l Cji'

' —1
Lemma 2.2. Forl € N, let d,, = 1+Zl§j§l;7_1 (n > 1) with dy = 1.
Then {Vi, Vi1, - ,Viqir1} 18 linearly dependent ]%07" all i € Ny where v; =
(diydiv1, -+ diyiv1) € CH2 for all i € Ny. In particular, the infinite matriz with
row vectors Vi, Vir1, - ,Viyir1 (¢ > 0) has rank | + 1.

Proof. For simple notations, we write J; := Ji(l) forall i =2,3,---,l—1. Put

w=0 [ eva=0 (L o+ X o),

1<5<d 1<5<1 (1, sdi—1)€Ji—1
_ -2
az = (_1) ( E Cjryeior T E : Cjy,ee ,jlz)v' T
(J1,di—1)€J1-1 (J1,sdi—2)€Ji—2
1
ai-1 = (-1) ( Y it D Cj>7 =) ¢+l
(J1,d2)€J2 1<5< 1<5<1

For simple calculations, we can obtain that ZO<]’<Z ajdjy; = diyi41 for all i € Ny.
Hence the set {v;, Vi1, -, Viti41} is linearly dependent for all ¢ € Ny. O
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For a o-finite measure space (X, F, i), it follows from [7] that the composition
operator Cr on the space L?(X, F, 1) is E(n)-hyponormal for a positive integer n if
and only if the (n+1) x (n+1) matrix (h;y;(x))} ;= > 0 for almost all z € X with
respect to p, where hy(z) is the n-th Radon-Nikodym derivative with ho(z) = 1.
Then we obtain the following theorem.

Theorem 2.3. For | € N, let Cr, be a composition operator on the space
L?(No, F, ;). Then Cr, is E(l)-hyponormal if and only if Cr, is subnormal.

Proof. Let | € N. According to the remark above this theorem, we obtain that
the composition operator Cr, is E(I)-hyponormal if and only if the (I +1) x (I+1)
matrix (hi+j(k;))li’j:0 > 0 for almost all k, where h, (k) is n-th Radon-Nikodym
derivatives. For the case k # 0, using the Proposition 2.1, we see that each column
vectors of the infinite matrix (hi1;(k)){5_o is linearly dependent and its rank is 1.
So from BP(i), we have that the infinite matrix (hi1;(k));5—¢ > 0. Hence C7, is
subnormal.

Finally we only show the result for the case £ = 0. For brevity, we write
hyn = h,(0) for all n > 1 and hg = 1. By Proposition 2.1 and Lemma 2.2, we
see that the (I + 1) x (I + 1) matrix (hi+j)§’j:0 has rank [ + 1. And by BP(i),
rank (hi+j)»lg)j:0 =1+ 1 =rank (hiy;);';o for all n > 1 + 1. Also, from the condi-
tion (hi+j)ﬁ7jzo > 0, we can obtain that (hiy;)f;—o > 0 for all n > 1. Hence the
composition operator Cr, is subnormal. The converse implication is obvious. [J

Corollary 2.4. For I € N, let Cr, be a composition operator on the space
L?(No, F, ). Then Cr, is E(l)-hyponormal if and only if Cr, is l-hyponormal.

Proof. We note that n-hyponormality implies E(n)-hyponormality for each n € N.
From Theorem 2.3, we can have the assertion. ([l

In addition, we show formulae of determinants for the matrix (hi4;)7;—¢ (n > 1)
in the following proposition.

Proposition 2.5. Forl € N, we have that

1,7 i 5 2.D :Za
det(hiy;(0))7 —{ H(Jl,m)ng”(CJl ¢j,) 1 forn

H3=0 " 0 forn>1+1,
where l
D, = Z(—l)lir(l—l-l —’/‘) Z Ciy oo iy
r=0 (i1, i) €T
In particular, det(h;y;(k));'j—o =0 for all k # 0 and n > 1.
Proof. From the Proposition 2.1 and Lemma 2.2, we can obtain the result. O

Remark 2.6. From Theorem 2.3 and Proposition 2.5, we can see that the matrix
(hiyj(k))}j—o = 0 for all k € N and n > 1. i.e., the composition operator C7r, is
always subnormal.
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3. Distinctions of F(n)-hyponormalities

In our constructed model, we want to show the distinctions of F/(n)-hyponormal-
ities for each n € N. Owing to Theorem 2.3, we can see that disjointness of E(n)-
hyponormal operators comes from only cases n = 1,2,--- [ for the given positive
integer number [. So we show that the gaps between F(n)-hyponormal operators
step by step for given number n.

3.1. E(1)-hyponormal but not E(2)-hyponormal. For k € Ny and n = 1,2,
we set
RE(2,n) = {(c1,¢2) : Cp, is E(n)-hyponormal}

and
RD(2,n) = {(c1,¢2) :det A; >0 (i =1,--- ,n—1) and det A, >0},

where A; = (th(O))ﬁ,j:O for I = 1,2,---. Then we can obtain that RE(2,n) =
RD(2,n), n = 1,2. In fact, from BP(iii), we have that RD(2,n) C RE(2,n). To
show the reverse implication, let (¢1,c2) € RE(2,n), i.e., A, > 0 for all k € Ny and
n=1,2,---. Suppose that there exists (a1, ) such that det Ay =¢; +c2—6=0
for ¢; > 0 and ¢z > 0. Since det Ay = (c1 — ¢2)%(3 — 2¢1 — 2¢o + c1¢2), if we put
f(e1,e2) := 3 —2¢1 — 2¢9 + c1c2, then we can have that f(a1,as) < 0, which is
contradicts to Ay > 0. Hence we have the following assertions;

Cr, is E(1)-hyponormal <= ¢; +¢2 —6 >0 for ¢; > 0,c2 > 0
and
Cr, is E(2)-hyponormal <= 3 — 2¢; — 2¢3 + ¢162 > 0 for ¢; > 0,¢9 > 0.

Remark 3.1. More specially, to see the gaps between F(n)-hyponormalities for
n=1,2, in R, we restrict d = 2c with the positive number c. Put

I; = {¢>0:Cp, = E(i)-hyponormal}

for i = 1, 2. Then we have two intervals, I = [a,00) & I} = [2,00), where

— 3+
5 -

o

3.2. E(2)-hyponormal but not E(3)-hyponormal. From now on, because of
conveniences of calculations, we will look for the gaps in R! about the classes of
E(n)-hyponormal composition operators for each positive integer n. Put each point
mass ¢; = j-cfor j =1,2,--- 1 for a positive number c. For k € Ny andn =1,2,3,
we set RE(3,n) ={c>0:A, >0} and

RDB,n)={c>0:detA; >0 (i=1,--- ,n—1) and det A, > 0},

where A, = (hi1;(0))7;—o- Then we can obtain that RE(3,n) = RD(3,n) for n =
1,2, 3. Indeed, from simple calculations, det A; = 6(c — 2) and det Ay = 4c?(5c? —
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15¢+6) = 0 for ¢ > 0. Suppose that there exists ag > 2 such that 5¢* — 15¢+6 = 0.
Since det Az = 8¢(—2 + 9c — 11¢2 + 3¢?), if we put f(c) :== =2+ 9c — 11¢? + 3¢?,
then we can have that f(ag) = —&% + = < 0 (because ap > 2), which contradicts

to Ag > 0. If we denote an interval I, = {¢ > 0 : Cp, is E(n)-hyponormal} for
n =1,2,3, then we have the following relationships for F(n)-hyponormalities,

Iy = [ag,00) C I = [az,00) C I1 = [2,00),

where as =~ 2.525, ag ~ 2.618.

3.3. Algorithm. Throughout previous examples, we provide the following algo-
rithm giving the distinctions of F(n)-hyponormalities for a fixed integer I > 3 and
a constant ¢ > 0.

I. Set a matrix Q = (hi1;){5—g, Where each hy, := h;,(0) is the same as in
Proposition 2.1.

ITI. Compute the determinants of matrices Q for &k = 1,2,--- | I. Put di(c) =
(i+1
det Q, for k=1,2,--- 1. Then d;(c) = ( _2|— )

(¢ —2). So we take ay(=c¢) > 2.

ITI. Find polynomial remainder Ry(c) of di(c),

di(c) = ( Z 72N () + Ri(e), 2< k<.
1<5<d

IV. For each ap_1 > 2, 2 < k < [, check Rp(ag—1) < 0, where aj_; is the
greatest root of di_1(c) = 0.

\f.Filld.E(l,n):{C>0:dk>07 d, >0, 1§/€§’n—1}forn:1’27...7l.

3.4. Some estimations. Using Algorithm, we can obtain mutually disjoint values
a1, ag, -+, ap satisfying a,, € E(l,n) (n = 1,--- 1) for some low numbers per-
mitted by computer estimations, which means that the classes of E(n)-hyponormal
operators are distinct, i.e., E(I,n — 1)\E(l,n) = [ap—1, @) for such low numbers.

For examples, we give the numerical values a;_; and g in the Table 3.1 which
show the distinct classes of E(n)-hyponormal operators for 1 <n <1, 2 <[ < 10,
where the values of «; are approximated ones.

l=2|1=3|1l=4|1=5|1=6|1=7 =8 =9 =10
o1 2 2.525 | 2.789 | 2.965 | 3.105 | 3.2226 | 3.3264 | 3.419313 | 3.5035871
o 2.366 | 2.618 | 2.812 | 2.971 | 3.106 | 3.2229 | 3.3265 | 3.419336 | 3.5035923

Table 3.1
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