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EXTREMAL PROBLEM OF A QUADRATICALLY
HYPONORMAL WEIGHTED SHIFT

HEE YUL LEE AND MI RYEONG LEE*

ABSTRACT. Let W, be a recursively generated quadratically hyponormal
weighted shift with a weight sequence a : 1, (1, /z, /y)". In [4] Curto-Jung
showed that R = {(z,y) : Wi (1,vz )~ 18 quadratically hyponormal } is a
closed convex with nonempty interior, which guarantees that there are a lot
of quadratically hyponormal weighted shifts with first two equal weights.
They suggested a problem computing expressions of certain extremal points
of R. In this note we obtain a partial answer of their extremal problem.
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1. Introduction

Let 'H be a separable, infinite dimensional, complex Hilbert space and let
L(H) be the algebra of all bounded linear operators on H. For A, B € L(H),
let [A,B] := AB — BA. We say that an n-tuple T = (71, ...,T,) of operators

in L(H) is hyponormal if the operator matrix ([T ;,Tz—])?‘z' 1
: i,j=
direct sum of n copiesof H. Fork > land T € L(H), T = (11, ..., Tk) is weakly-

hyponormal if ATy + --- 4+ ATy is hyponormal for every \; € C, i = 1,...,k,
where C is the set of complex numbers. |

An operator T is weakly k-hyponormal if (T, ..., T*) is weakly hyponormal. In
particular, weak 2-hyponormality, often referred to as quadratic hyponormality,
was discussed in [1], {2], and [3]. To detect the quadratic hyponormality of
weighted shifts, Fialkow-Curto introduced the concept of positively quadratically
hyponormal weighted shifts whose definition appears in [3].

Also it was shown in (8] that two notions of quadratic hyponormality and posi-
tively quadratic hyponormality are equivalent in the one-step extended weighted

shifts W~ with a tail induced recursively by three numbers 0 < b < ¢ < d, where

is positive on the
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a: va, (Vb /¢, Vd) (which will be defined below). Furthermore, the flatness
of weighted shifts makes an important role to study the quadratic hyponormal-
ity. As one of such models for studying its flatness, in {4] they considered the
recursively weighted shift a(z,y) : 1,(1, vz, /y)" with 1 < z < y and obtain
that the set

R={(z,y): Wy

V2 2.y 1S quadratically hyponormal}

1s a closed convex set with nonempty interior and there exist unique maximum
values zps and ypr of z and y such that RN ({zar} x R) and RN (R x {ya}) are
singletons, where R is the set of real numbers. And they suggested the following

extremal value problem.
Problem 1.1([Problem 5.1][4]). Find a concrete expression for xp and yp.

According to Corollary 2.2 below, it is worthwhile to consider only the case
of weighted shift W, with ||W,|| = 1 to detect the quadratic hyponormality. For
a given a € (0,1), let a(z,y) : va,(Va, vz, /¥)" be a weight sequence with
a <z < y. In this note we solve Problem 1.1 for a weighted shift WE(:c,y) with

IIWQ(w,y)“ =1 |

We now recall [2] that a weighted shift W, is said to be.recursz'vely generated
if there exist 1 > 1 and ¥ = (¥, - ,¥,;_;) € C* such that

o= Vi Y14+ ¥oyn—i (n>1), - (1.1)
where v,(n > 0) is the moment sequence of Wy, i.e., 70 := 1, Yny1 1= @2Vn
(n > 0). Furthermore, (1.1) is equivalent to

v,_ Vj .
R 7= SN | N )
- Qn—1 Qp_1" " "X _i41
Given an initial segment of weights o : ag, -+ ,azr (k> 0), there is a canon-

ical procedure to generate a sequence (denote &) in such a way that W~ is a
recursively generated shift having o as an initial segment of weights (cf. [2}).
We now review this procedure in a special case of Kk = 1. Given a : ag, a1, as
(0 < ap < ay < az), let |

Yo {mn 2
Vo 1= , = . = :
°(n) m(w) w(%)

_The véctor’s. 'uq_a.nd vy are lin__éarly independent in Rz, SO there exists a unique
v = (‘I’o, ‘I’l) € R? such that v = Yovg + ¥1v;1. In fact,

2,.2¢,.2 2 3} 22 2
_ ogaj(os —af) _aj(ag — ag)

Let ¥:=7v, (0<n <1)and let J, := ¥1Yp_1 + \I/(ﬁn‘_.z (n > 2). Then

Qp 1= \/ﬁn+1/ﬁn.
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(n > 0) (so that &, = a, for 0 < n < 2) and the coefficients of a recursively
generated weighted shift is a2 = ¥; + ¥o/@2_; (n >1). Such a recursively
weight sequence is written by (g, a1, a2)™ (cf. [5], [7]).

2, Striving extremal values.

We consider a recursively generated weighted shift W, with a weight sequence
a : +/a,(va,vz,/¥)" and 0 < a < z < y. In special case, we focus on the
weighted shift W, having the norm one which involves the general case.

We begin with the following elementary lemma.

Lemma 2.1. Let 0 <a <b<c. Then /s- W(JE,\/E,\/E)A =
any s € (0,00).

Proof. First we consider two weight sequences a : (v/a, Vb, /)" and o :
(v/5a,V/sb, /s¢)" with 0 < a < b < ¢ for any fixed s > 0. Put

(v3a,V3b,/se)n Jor

ab(b — b(c - a)
= = 1.2
¥y DS and ¥, — ( )
and let 0 = 1,71 = a, and Yn42 = Yiynt1 + Yoy (n = 0). Then a, =

('Yn+1

- In

for the recursive sequence (1/a, Vb, v/¢)". On the other hand, by similar method,

we can find the numbers

s?ab(b — c) sb(c — a)
b—a b—a

about the recursive sequence (v/sa, v/sb, /sc). Put ) = 1,7} = sa, and v, 1, =

| / 1
1Yne1 + ¥y, (n > 0). Then o, := (’Y:j~1)2 (n > 0) are the coeflicients of
n
Vvsa, Vs, /sc)*. Clearly aly = v/Sap, and since
0

)2 (n > 0) are the coefficients of a recursively generated weighted shift

Uy = = s°¥g and ¥] = = s¥,

7{ o L]
Ay = F2= /s %_+2 = Vsait1 (£ 2 0),
Yit1 Tit1

a;, = /sa, for all n > 0. O

Corollary 2.2. Let & : /a0, /01, " ,\/On—1,(y/0n, /Ont1:/Qnyz)" with
0 < a;—1 <a; forall i > 1. Then the unilateral weighted shift W, has norm
Ve if and only if the shift W, with

o % Qn—1 &L_ An+1 Qn+2 "
.VJ’ ’ § (5’\/ ) ’V )

has norm 1.

Proof. By Lemma 2.1, Wy = iWc,[._So IWall = HLWQ

Y Ve

1
— Wa — 1—
Vs IWal
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Let W- be a recursively generated weighted shift where @ : (y/a, Vb, v/¢)" and
0 <a<b<ec Since |Wa|° = (¥, + /92 + 4¥;)/2, we have that ”WA” =1 if
a?—b+1)-b

(a—1)b

and only if ¢ =

Theorem 2.3. Let W, be a recursively generated weighted shift with a :

va,(vVe, vz, N, 0<a <z <y<1, and |Wa| = 1. Then Wy is quadrat-

ically hyponormal if and only if = € (a,r,] where ro is the root of f(x) = 0,
4

where f(z) = Z c;xt with

i=0
co : =a>0,
aa : =—(a®-a'-a®+3e*+1) <0,
2 : =a2a*-3a34+a?>+3)>0,
c3 1 = —(152(0,3 —2a° —a+ 3) <0,
Ca =a3(1—a) > 0.

(Note that 0 < r, < 1.)

a(z? —z+1)—=x
(a — 1)z

W4 is quadratically hyponormal if and only if sW,, is quadratically hyponormal

for all s > 0. Combining this fact with [8] and Lemma 2.1, W, is quadratically

hyponormal if and only if W,/ is positively quadratically hyponormal with weight

TAN :
sequence o ( \/7 \/ ik +1 1) - :c) . Adjusting numbers from (1.2),
a —

we obtaln

Proof. Since ||W,|| = 1, by the above remark y = . Note that

:1:——1' ar — 1

Vg i= ———= (= ———,
0 a{a — 1) and ¥, a{a — 1)

And also we consider

‘I’% .\I’1+\/\I/:1‘)+4\IJO

K= —
WYy 2

By results in .[4], W is positively quadratically hyponormal if and only if

o z[zA + z (A — 1)K + (aA — 2)K?] ._1/2
L<hy = (aw{l +(A-1)K]+a(a+ zA — 2azx) Kz) )

where

(az — 1) and A — a(z® —z+1) —

@ DED R CES Ea
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which is equivalent to f(x) > 0. Furthermore, since fora <1< 1 <1+ -};,

fla) = (1—a)a*(1+2a)>0,
f1) = —(1-a)<o,

/(2)

(1—-a)a >0,

1
f(l+—)=—a4<0,
a o

the function f has 4 different positive roots. Hence the smallest root r, of these
positive roots is the required one. | O

and

The following remark provides the concrete expression for 7.

Remark 2.4. According to simple computation, the root r, is expressed by

ez 1 1 |5 Ae t
a:——"—‘.——_G_.— — —A—B‘__, 2.1
T e 272 \/zcg 3¢4 4G (21)

where
23q |
A= _, (2.1a)
3ca(p + /—4¢% + p?)3
403 + n2)3
p= Pt V-a@+ph)T  (21b)
323 ¢4 | |
E c2 262 | | |
4c¢i  3cy FATE | | @l
c3  4dcpe 8c | S
tZ_—Cg‘f' 0223“‘01, | (2.1d)
4 4 4
p= 233 — O9cic0c3 + 27cfc4 + 27coc§ — T2cpcC2c4, (2.1¢)
q = c% — 3ciez + 12¢pc4. | N | , (2'1f)

The quantity —4¢® + p? in (2.1a) and (2.1b) can be negative. In fact, the
imaginary parts of A and B are cancelled in computing of A + B. Also, by the
proof of Theorem 2.3, 7, should be positive real number, which guarantees the

2
crs e C3 dcy t .
positivity of 202 T30, A-B - ek (2.1).

o 1, 17 5.3, 51 1
E);ample 2.5. If we consider a = 2 then f(z) = 6% ~ 3% + 5T 32:1:+ 5
and so

re = %(17—~/1_7— \/2(41—\/ﬁ)>.
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Hence W, is quadratically hyponormal if and only if

2.

1/2<z< = 3 (17 V17 \/2 41 — ) ~ 0.03611.
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