East Asian Math J 17(2001), No 1, pp 87-92

A NOTE ON THE ESSENTIAL SPECTRUM OF AN IRREDUCIBLE *P*-HYPONORMAL OPERATOR

KWANG IL LEE AND HYUNG KOO CHA

ABSTRACT In this paper, we have the extended result of Bunce's theorem And we show that if T is an irreducible p-hyponormal operator such that $T^*T - TT^*$ compact, then $\sigma_{ap}(T) = \sigma_e(T)$ and $\sigma_p(\phi(T)) = \sigma_e(\phi(T))$

1. Introduction

Let \mathcal{H} be a complex Hilbert space. The *-algebra of all bounded linear operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$ and $K(\mathcal{H})$ is the ideal of all compact operators on \mathcal{H} For an operator T, we denote the spectrum, the essential spectrum and the approximate point spectrum by $\sigma(T)$, $\sigma_e(T)$ and $\sigma_{ap}(T)$, respectively.

Let U|T| be the polar decomposition of T, where U is partial isometry, |T| is a positive square root of T^*T and ker $|T| = \ker U$. An operator T is said to be a *p*-hyponormal operator if $(T^*T)^p - (TT^*)^p \ge 0$. If p = 1, T is called hyponormal and if $p = \frac{1}{2}, T$ is called semi-hyponormal. It is well known that a *p*-hyponormal operator is *q*-hyponormal operator for $q \le p$.

If \mathcal{A} is a C^* -algebra with identity, $\Phi_{\mathcal{A}}$ is the set of nonzero homomorphism of \mathcal{A} into \mathbb{C} , and M is the commutator ideal of \mathcal{A} (that is, M is the norm closed ideal generated by the set of all elements of

Received October 3, 2000 Revised May 2, 2001

²⁰⁰⁰ Mathematics Subject Classification 47B20, 47A10

Key words and phrases *p*-hyponormal, approximate point spectrum, essential spectrum, irreducible operator

 \mathcal{A} of the form ab - ba), then $M = \cap \{h^{-1}(0) : h \in \Phi_{\mathcal{A}}\}$ and $\Phi_{\mathcal{A}}$ is the maximal ideal space of \mathcal{A}/M . With the above statement, we have $\mathcal{A}/M \cong C(\Phi_{\mathcal{A}/M})$ under the Gel'fand transform, $a + M \to \hat{a}$ where $\hat{a}(h) = h(a)$ for a in \mathcal{A} and h in $\Phi_{\mathcal{A}/M}([5], [6])$.

In [2], one of the authors constructed an extension \mathcal{K} of \mathcal{H} by means of weakly convergent sequences in \mathcal{H} and the Banach Limit and obtained the faithful *-representation ϕ of $\mathcal{B}(\mathcal{H})$ on \mathcal{K} .

PROPOSITION 1.1 ([2]) There exists a faithful *-representation ϕ of $\mathcal{B}(\mathcal{H})$ on \mathcal{K} with the following properties:

- $(1) \|\phi(T)\| = \|T\|$
- (2) $\sigma(T) = \sigma(\phi(T))$
- (3) $\sigma_{ap}(T) = \sigma_p(\phi(T))$
- (4) If T is a compact operator on \mathcal{H} , then $\phi(T)$ is a compact operator on \mathcal{K}
- (5) If T is a Fredholm operator on H, φ(T) is a Fredholm operator on K.

For $T \in \mathcal{B}(\mathcal{H})$, $C^*(T)$ is the C^{*}-algebra generated by a single operator T and identity.

Proposition 12([3])

- (1) The C^* -algebra $C^*(T)$ is isometrically *-isomorphic to the C^* -algebra $C^*(\phi(T))$.
- (2) If M is the maximal ideal of $C^*(T)$, then $\phi(M)$ is the maximal ideal of $C^*(\phi(T))$.
- (3) Let $\Phi_{C^*(T)}$ and $\Phi_{C^*(\phi(T))}$ be the maximal ideal space of $C^*(T)$ and $C^*(\phi(T))$, respectively. then $\Phi_{C^*(T)}$ and $\Phi_{C^*(\phi(T))}$ are isometrically isomorphic.

Proposition 13 ([3])

- (1) $M = \cap \{ f^{-1}(0) : f \in \Phi_{C^*(T)} \} \cong N = \cap \{ h^{-1}(0) : h \in \Phi_{C^*(\phi(T))} \}.$
- (2) $C^*(T)/M \cong C^*(\phi(T))/N$.

An operator is said to be *reducible* if it has a nontrivial reducing subspace. If an operator is not reducible, then it is called *irreducible*.

PROPOSITION 1.4 ([6]) If T is an irreducible operator such that $T^*T - TT^*$ is compact, then the commutator ideal M of $C^*(T)$ is $K(\mathcal{H})$

PROPOSITION 1.5 ([3]) If T is an irreducible operator, then $\phi(T)$ is an irreducible operator.

In this paper, we will improve the Bunce's theorem for hyponormal operator to p-hyponormal operator. Also for an irreducible phyponormal operator T, we investigate the relationship between the point spectrum and the essential spectrum of $\phi(T)$, and obtain that $\sigma_p(\phi(T)) = \sigma_e(\phi(T))$.

2. Main results

A point $z \in \mathbb{C}$ is the joint approximate point spectrum $\sigma_{ja}(T)$ if there exists a sequence of unit vectors $\{x_n\}$ in \mathcal{H} such that $(T-z)x_n \to 0$ and $(T-z)^*x_n \to 0$. M. Cho and T. Huruya showed that $\sigma_{ap}(T) = \sigma_{ja}(T)$ for *p*-hyponormal operator T([4]).

Bunce proved the following proposition and corollary for hyponormal operator([1]) In this paper, we have the same results for phyponormal operator.

PROPOSITION 2.1 Let T = U|T| be p-hyponormal. Then $\lambda \in \sigma_{ap}(T)$ if and only if there is a *-homomorphism $\psi : C^*(T) \to \mathbb{C}$ such that $\psi(T) = \lambda$.

PROOF Suppose $\psi : C^*(T) \to \mathbb{C}$ is a *-homomorphism such that $\psi(T) = \lambda$. If $\lambda \notin \sigma_{ap}(T)$, then there is a constant c > 0 such that $\|(T-\lambda)x\| \ge c \|x\|$ for all x in \mathcal{H} . This implies that $T^*T - \lambda T^* - \bar{\lambda}T + \bar{\lambda}\lambda - c^2$ is a positive operator. Hence $0 \le \psi(T^*T - \lambda T^* - \bar{\lambda}T + \bar{\lambda}\lambda) - c^2 = -c^2$, a contradiction. Hence $\lambda \in \sigma_{ap}(T)$.

Conversely, suppose $\lambda \in \sigma_{ap}(T)$. Let $\{x_n\}$ be a sequence of unit vectors in \mathcal{H} such that $||(T - \lambda)x_n|| \to 0$. Let LIM denote a Banach limit and define $\psi : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ by $\psi(B) = LIM < Bx_n, x_n >$. If $B \in \mathcal{B}(\mathcal{H})$ then $||B(T - \lambda)x_n|| \to 0$. So $\psi(B(T - \lambda)) = LIM < B(T - \lambda)x_n, x_n >= 0$. Since T is p-hyponormal, $\sigma_{ap}(T) = \sigma_{ja}(T)$, thus $||(T - \lambda)^*x_n|| \to 0$. Hence $\psi(B(T - \lambda)^*) = 0$ for every $B \in \mathcal{B}(\mathcal{H})$ and $\psi(I) = LIM ||x_n||^2 = 1$. Therefore if $p(T, T^*)$ is any non-commuting polynomial in T and T^* that has no constant term, $\psi(p(T,T^*) + \alpha) = \alpha$, for all α in \mathbb{C} . This implies that ψ is multiplicative on a dense subalgebra of $C^*(T)$. Hence $\psi|_{C^*(T)}$ is multiplicative and $\psi(T-\lambda) = 0$ and

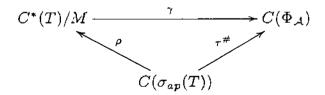
$$0 = \psi(T - \lambda) = LIM < (T - \lambda)x_n, x_n >$$

= $LIM < Tx_n, x_n > + LIM < -\lambda x_n, x_n >$
= $\psi(T) - \lambda.$

So $\psi(T) = \lambda$ and $\psi(T^*) = LIM < T^*x_n, x_n > = \{LIM < Tx_n, x_n > \}^* = \psi(T)^*$. Therefore ψ is a *-homomorphism such that $\psi(T) = \lambda$.

COROLLARY 2.2. If T is p-hyponormal, there is an isometric *-isomorphism of $C^*(T)/M$ onto $C(\sigma_{ap}(T))$, where A + M is mapped to the function z.

PROOF. Let $\tau : \Phi_{\mathcal{A}} \to \sigma_{ap}(T)$ be defined by $\tau(\psi) = \psi(T)$. By Proposition 2.1, this map is surjective. On the other hand, if $\psi, \psi' \in \Phi_{\mathcal{A}}$ and $\psi(T) = \psi'(T)$, then $\psi = \psi'$. Since $\Phi_{\mathcal{A}}$ is compact and map is continuous, τ is a homeomorphism and $\tau^{\#} : C(\sigma_{ap}(T)) \to C(\Phi_{\mathcal{A}})$ is defined by $\tau^{\#}(f) = f \circ \tau$. Note that $\tau^{\#}$ is an isometric *-isomorphism. We define a map $\rho : C(\sigma_{ap}(T)) \to C^*(T)/M$ so that the following diagram commutes :



where the Gel'fand transform $\gamma : C^*(T)/M \to C(\Phi_{\mathcal{A}})$ is an isometric *-isomorphism of $C^*(T)/M$ onto $C(\Phi_{\mathcal{A}})$.

We show that the *-representation ϕ preserves the *p*-hyponormality.

PROPOSITION 2.3 Let T = U|T| be p-hyponormal, $\phi(T)$ is a p-hyponormal operator.

PROOF We need only to prove that $p = \frac{1}{2^n}$ for some *n*. Since $|\phi(T)|^2 = \phi(T)^* \phi(T) = \phi(T^*T) = \phi(|T|^2) = \phi(|T|)^2$. By the uniqueness of the square root of a positive operator, we have $\phi(|T|) = |\phi(T)|$. Similarly, $\phi(|T^*|) = |\phi(T^*)|$

By the assumption, we have

$$(T^*T)^{\frac{1}{2^n}} - (TT^*)^{\frac{1}{2^n}} \ge 0.$$

Thus,

$$\begin{aligned} (\phi(T^*)\phi(T))^{\frac{1}{2^n}} &- (\phi(T)\phi(T^*))^{\frac{1}{2^n}} \\ &= \phi((T^*T))^{\frac{1}{2^n}} - \phi((TT^*))^{\frac{1}{2^n}} \\ &= \phi((T^*T)^{\frac{1}{2^n}}) - \phi((TT^*)^{\frac{1}{2^n}}) \\ &= \phi((T^*T)^{\frac{1}{2^n}} - (TT^*)^{\frac{1}{2^n}}) \ge 0. \end{aligned}$$

With the notation of Proposition 1.1, Proposition 1.3 and Corollary 2.2, we have following

PROPOSITION 2.4 If T is a p-hyponormal operator, then $C^*(T)/M \cong C^*(\phi(T))/N \cong C(\sigma_p(\phi(T))).$

In [3], One of the authors proved the following two theorems for hyponormal operator. Now we have same results for p-hyponormal operator.

THEOREM 2.5 If T is an irreducible p-hyponormal operator such that $T^*T - TT^*$ is compact, then $\sigma_{ap}(T) = \sigma_e(T)$ and $\sigma_p(\phi(T)) = \sigma_e(\phi(T))$.

PROOF The fact that $\sigma_{ap}(T) = \sigma_e(T)$ follows immediately from Proposition 1.4 and Corollary 2.2. The second assertion is clear from Proposition 1.4 and Proposition 1.5.

COROLLARY 2.6 If T is an irreducible p-hyponormal operator such that $T^*T - TT^*$ is compact, then $\sigma_e(T) = \sigma_e(\phi(T))$.

References

- J.W. Bunce, Characters on singly generated C*-Algebra, Proc Amer Math Soc. 25 (1970), 297 - 303.
- [2] H K Cha, Spectra of the image under the faithful *-representation of $L(\mathcal{H})$ on K, Bull Korean Math Soc **22** (1985), 23 29
- [3] H K Cha, On the essential Spectrum of an irreducible hyponormal operators, Bull Korean Math Soc 24 (1987), 159 - 164
- [4] S Muneo Chō and T. Huruya, p-hyponormal operators for 0 , Comment. Math**33**(1993), 23 29
- [5] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990
- [6] J.B. Conway, The Theory of Subnormal Operators, Amer Math.Soc, Providence, RI, 1991

Department of Mathematics Hanyang University Seoul_133-791, Korea *E-mail*: hkcha@hanyang.ac.kr