• Title/Summary/Keyword: k-Ricci curvature

Search Result 119, Processing Time 0.018 seconds

ON LIGHTLIKE SUBMANIFOLDS OF A GRW SPACE-TIME

  • Kang, Tae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.295-310
    • /
    • 2014
  • This paper provides a study of lightlike submanifolds of a generalized Robertson-Walker (GRW) space-time. In particular, we investigate lightlike submanifolds with curvature invariance, parallel second fundamental forms, totally umbilical second fundamental forms, null sectional curvatures and null Ricci curvatures, respectively.

ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME

  • Kang, Tae-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.863-874
    • /
    • 2012
  • We provide a study of lightlike hypersurfaces of a generalized Robertson-Walker (GRW) space-time. In particular, we investigate lightlike hypersurfaces with curvature invariance, parallel second fundamental forms, totally umbilical second fundamental forms, null sectional curvatures and null Ricci curvatures, respectively.

ON CURVATURE PINCHING FOR TOTALLY REAL SUBMANIFOLDS OF $H^n$(c)

  • Matsuyama, Yoshio
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.321-336
    • /
    • 1997
  • Let S be the Ricci curvature of an n-dimensional compact minimal totally real submanifold M of a quaternion projective space $HP^n (c)$ of quaternion sectional curvature c. We proved that if $S \leq \frac{16}{3(n -2)}c$, then either $S \equiv \frac{4}{n - 1}c$ (i.e. M is totally geodesic or $S \equiv \frac{16}{3(n - 2)}c$. All compact minimal totally real submanifolds of $HP^n (c)$ satisfy in $S \equiv \frac{16}{3(n - 2)}c$ are determined.

  • PDF

From the Eisenhart Problem to Ricci Solitons in Quaternion Space Forms

  • Praveena, Mundalamane Manjappa;Bagewadi, Channabasappa Shanthappa
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.389-398
    • /
    • 2018
  • In this paper we obtain the condition for the existence of Ricci solitons in nonflat quaternion space form by using Eisenhart problem. Also it is proved that if (g, V, ${\lambda}$) is Ricci soliton then V is solenoidal if and only if it is shrinking, steady and expanding depending upon the sign of scalar curvature. Further it is shown that Ricci soliton in semi-symmetric quaternion space form depends on quaternion sectional curvature c if V is solenoidal.

ON TRANSVERSALLY HARMONIC MAPS OF FOLIATED RIEMANNIAN MANIFOLDS

  • Jung, Min-Joo;Jung, Seoung-Dal
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.977-991
    • /
    • 2012
  • Let (M,F) and (M',F') be two foliated Riemannian manifolds with M compact. If the transversal Ricci curvature of F is nonnegative and the transversal sectional curvature of F' is nonpositive, then any transversally harmonic map ${\phi}:(M,F){\rightarrow}(M^{\prime},F^{\prime})$ is transversally totally geodesic. In addition, if the transversal Ricci curvature is positive at some point, then ${\phi}$ is transversally constant.

Paracontact Metric (k, 𝜇)-spaces Satisfying Certain Curvature Conditions

  • Mandal, Krishanu;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The object of this paper is to classify paracontact metric ($k,{\mu}$)-spaces satisfying certain curvature conditions. We show that a paracontact metric ($k,{\mu}$)-space is Ricci semisymmetric if and only if the metric is Einstein, provided k < -1. Also we prove that a paracontact metric ($k,{\mu}$)-space is ${\phi}$-Ricci symmetric if and only if the metric is Einstein, provided $k{\neq}0$, -1. Moreover, we show that in a paracontact metric ($k,{\mu}$)-space with k < -1, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Several consequences of these results are discussed.

ON GRADIENT RICCI SOLITONS AND YAMABE SOLITONS

  • Choi, Jin Hyuk;Kim, Byung Hak;Lee, Sang Deok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • In this paper, we consider gradient Ricci solitons and gradient Yamabe solitons in the warped product spaces. Also we study warped product space with harmonic curvature related to gradient Ricci solitons and gradient Yamabe solitons. Consequently some theorems are generalized and we derive differential equations for a warped product space to be a gradient Ricci soliton.

ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.603-611
    • /
    • 2020
  • The purpose of this note is to introduce a type of Riemannian manifold called an almost quasi Ricci symmetric manifold and investigate the several properties of such a manifold on which some geometric conditions are imposed. And the existence of such a manifold is ensured by a proper example.

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN LORENTZIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Choi, Eun-Hee;Lee, Soo-Young
    • Honam Mathematical Journal
    • /
    • v.40 no.3
    • /
    • pp.447-456
    • /
    • 2018
  • In this paper, we consider nonconstant warping functions on Einstein Lorentzian warped product manifolds $M=B{\times}_{f^2}F$ with an 1-dimensional base B which has a negative definite metric. As the results, we discuss that on M the resulting Einstein Lorentzian warped product metric is a future (or past) geodesically complete one outside a compact set.