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ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME

TAE Ho KaANG

ABSTRACT. We provide a study of lightlike hypersurfaces of a general-
ized Robertson-Walker (GRW) space-time. In particular, we investigate
lightlike hypersurfaces with curvature invariance, parallel second funda-
mental forms, totally umbilical second fundamental forms, null sectional
curvatures and null Ricci curvatures, respectively.

1. Introduction

In general relativity, a space time is a four-dimensional differentiable man-
ifold equipped with a Lorentzian metric. One important cosmological models
in general relativity is the family of Robertson-Walker space-times:

Li(e, f) = (I xy F.9), § = —dt* + f*(t)ge.
Explicitly, Li(e, f) is a warped product with Lorentzian metric g of an open
interval I and a three-dimensional Riemannian manifold (F,g.) of constant
curvature ¢ with a warping function f > 0, which is defined on an open interval
Iin R.

Recently B. Y. Chen and J. Van der Veken ([4]) studied nondegenerate sur-
faces (i.e., spatial or Lorentzian) of Robertson-Walker space-times from differ-
ential geometric view point. And also B. Y. Chen and S. W. Wei ([5]) provided
a general study of submanifolds in the Riemannian warped product I x; F,
g = dt? + f%(t)g., where F is an n-dimensional Riemannian manifold of con-
stant sectional curvature. A generalized Robertson-Walker spacetimes (GRW)
is defined as a warped product L?“ = I xy F, where I C R is an interval
with the metric —dt?, F is an n-dimensional Riemannian manifold. As far
as I know, there are no articles which provide study on degenerate (lightlike
or null) surfaces (resp. submanifolds) of Robertson-Walker space-times (resp.
GRW space-times). In this article we give a study of degenerate hypersur-
faces of a GRW space-time whose fibres are constant curvatures. In particular,
we investigate degenerate hypersurfaces with curvature invariance and parallel
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second fundamental forms (Section 4), totally umbilical second fundamental
forms (Section 5), null sectional curvatures and null Ricci curvatures (Section
6), respectively.

2. Basics on GRW space-times

In this section, we review some results of the connection and curvature of a
GRW space-time, which follow from general results on warped product ([10]).
Consider a GRW space-time

Lyt e, f) = (I x¢ F,g), g = —dt* + f*(t)ge.

where f is a smooth positive function on I, and (F,g.) is an n-dimensional
Riemannian manifold of constant sectional curvature c¢. The standard choices
for F are S™, E™ and H™, with curvature 1, 0, —1, respectively.

Let m and o be the natural projections of I x F onto I and F| respectively.
Let £(I) and £(F) be the set of horizontal and vertical lifts of vector fields on
I and F to I x s F| respectively. Let 0; € £(I) denote the horizontal lift vector
field to I x ¢ F' of the standard vector field % on I.

By a spacelike slice of LY (c, f) = (I x; F,§) we mean a hypersurface of
L (e, f) given by a fibre S(tg) := 7~ (to) with metric f2(to)ge.

For each vector X tangent to LT (c, f), we put

(2.1) X = ¢x0; + X,

where ¢x = —g(X, ;) and X is the vertical component of X.
The following two lemmas are well-known ([10]).

Lemma 2.1. Let V be the Levi Civita connection of Ly (c, f). For vectors
fields X,Y € £(F) we have
(1) Va,0r =0,
(2) Vg, X =Vx0, = (Inf)X,
(3) 9(VxY.0,) = ~5(X.Y)(In fY.
(4) VxY is the vertical lift of VXY, where V¥ is the Levi Civita connection
of F.

Lemma 2.2. Let R be the curvature tensor of Ly (¢, f). If X,Y,Z € £(F),
then

(1) R(:, X)0, = L7 X,

(2) R(X,0,)Y = —g(X, Y)%”at,

(3) R(X,Y)d =0,

(4) RX,Y)Z = YLE(G(Y, 2)X — g(X, 2)Y).

We can agglomerate (1) ~ (4) in Lemma 2.2 together into a single form
(2.2).
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Proposition 2.3. For any vector fields X,Y,Z on L?H(C, f)

(22) R(X,Y)Z = alg(Y. 2)X — §(X, 2)Y}
+BloxpzY — by 9z X + (px9(Y, Z) — ¢v3(X, Z))0;},

[P+e = LF—(f%+e)
f2 bl - f2 .

where o =

Proof. Making use of (2.1) for any vector fields X,Y, Z on L7+ (c, f), we have
from Lemma 2.2 and the linearity of curvature tensor

f P4, o oo o o

R(X,Y)Z = ?{Q(Y,Z)X -9(X,2)Y}

+ f7{¢x¢zf/ by ésX + (6x3(V. 2) — by (X, )0}

Rewriting this equation by substituting X = X — ¢x8; for any vector field X,
we get the desired form (2.2). O

From (2.2) we have:
Corollary 2.4. L?'H(c, f) is of constant curvature if and only if 5 = 0.

Proof. Note that if 8 = 0, then « is constant. ([l

Remark 2.5. The following facts follow from solutions of the differential equa-
tion 8 = 0.
(i) L' (c, f) is flat if and only if f(t) = at + b(c = —a?),
(ii) L7 (c, f) has constant curvature k2 > 0 if and only if f(t) = ae** +
be *t, ¢ = 4k3ab,
(iii) L""*(c, f) has constant curvature —k* < 0 if and only if f(t) =
asin(kt) +bcos(kt), c = —4k?(a® + b?).

3. Basics on lightlike hypersurfaces

In this section, we review some results from the general theory of lightlike
hypersurfaces ([6], [7], [8]).

Let (M, g) be a lightlike hypersurface of an (n + 1)-dimensional semi-Rie-
mannian manifold (M,g) with constant index ¢ (1 < ¢ < n). Then the so
called radical distribution Rad(TM) = TM NTM+> is of rank one, and the
induced metric g on M is degenerate and has constant rank n — 1, where T'M -+
denotes the normal bundle over M. Also, a complementary vector bundle of
Rad(TM) in TM is a non-degenerate distribution of rank n—1 (called a screen
distribution) over M, denoted by S(T'M). Thus we have the orthogonal direct
sum

(3.1) TM = S(T'M) L Rad(TM).
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Let tr(TM) be a complementary (but not orthogonal) vector bundle (called a
transversal vector bundle) to TM in TM | M. It is known that for any non-
zero section & € ['(TM~) on a coordinate neighborhood U C M there exists a
unique null section N of the transversal vector bundle ¢r(T'M) on U such that

(32)  g(N,§) =1Lg(N,N)=g(N,X) =0, VX el(S(TM) u).
Thus we have the decomposition.
(3.3) TM = S(TM) L (TM* @ tr(TM)) = TM @ tr(TM).

Throughout the paper I'(e) denotes the module of smooth sections of the vector
bundle e.

Now let V be the Levi-Civita connection of M and P be the projection
morphism of I'(T'M) on I'(S(T'M)).

According to the decomposition (3.3) and (3.1), we write the local Gauss
and Weingarten formulas for any X,Y € I'(TM) and N € I'(tr(TM))

(34) VxY=VxY +h(X,Y)=VxY + B(X,Y)N,B(X,Y) := g(h(X,Y),§),
(35) VxN=—AxyX + VikN=—AnX + 7(X)N, 7(X) := g(Vi N, §),
(3.6) VxPY=V%PY + h*"(X,PY)=VPY + C(X, PY)E,
(8.7) Vxé=—ALX — r(X)E,
where h and h* are the second fundamental forms of M and S(T'M), B and
C' are the local second fundamental forms on I'(T'M) and T'(S(T'M)), respec-
tively, V* is a metric connection on I'(S(T'M)), Ag the local shape operator on
I'(S(T'M)) and 7 is a 1-form on T'M.

The two local second fundamental forms of M and S(T'M) are related to
their shape operators by
(3.8) B(X)Y) =g(A:X,)Y), g(4:X,N)=0,
(3.9) C(X,PY)=g(ANX,PY), g(ANX,N)=0.
Note that in general, Ay is not symmetric with respect to g, the local second
fundamental form B is independent of the choice of screen distribution S(TM)
and satisfies
(3.10) B(X,£) =0, VX el(TM).
Furthermore, the induced linear connection V is not a metric connection. In-
deed we have
(3.11) (Vxg)(Y,Z) = B(X,Y)n(Z) + B(X, Z)n(Y)
for any X,Y € T'(T'M), where 7 is a differential 1-form locally defined on M
by

n(X) = g(X,N), VX eT(TM).

Denote by R and R the curvature tensor of V and V, respectively.

Then we have the Gauss-Codazzi equations of the lightlike hypersurface

(3.12)  g(R(X,Y)Z,PW) = g(R(X,Y)Z,PW) + B(X, Z)C(Y, PW)
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- B(Y, Z2)C(X, PW),

(3.13) J(R(X,Y)Z,§) = (VxB)(Y,Z) — (VyB)(X, Z)
+B(Y, Z)7(X) - B(X, Z)7(Y),
(3.14) G(R(X,Y)Z,N) = g(R(X,Y)Z,N)

for any X,Y, Z, W € I'(T' M), respectively, where we set
(VxB)(Y,Z) = XB(Y,Z) — B(VxY,Z) — B(Y,VxZ).
Also, from the right hand side of (3.14) with (3.6) and (3.7) we get

(3.15) J(R(X,Y)PZ,N) = (VxC)Y,PZ)— (VyC)(X,PZ)
+C(X,PZ)r(Y)—-C(Y,PZ)r(X),

(3.16) G(R(X,Y)¢,N) = C(Y, AX) = O(X, AFY) — 2d7(X,Y)

for any X,Y,Z € T'(TM), where we set

(3.17) (VxC)Y,Z2)=XC(Y,PZ)-C(VxY,PZ)—-C(Y,V%Z).

On the other hand, using again the formulas (3.4) and (3.5) of Gauss and
Weingarten, we obtain
(3.18) R(X,Y)N = RNX,Y)N — h(X, ANY) + h(Y, AxX)
= (VxA)NY + (Vy AN X,
where
(3.19) RYX,Y)N = V4V, N - Vi, V4N — Vix 1N,

is the curvature tensor of the transversal vector bundle tr(T'M) with respect
to the transversal connection V¢, and

(3.20) (VxA)NY = Vx(AnY) — An(VxY) — Ags v Y.

4. Curvature invariance and parallel second fundamental forms

Contrary to the case of nondegenerate hypersurfaces ([5]), in the case of
lightlike hypersurfaces we have the following lemma.

Lemma 4.1. Let M be a lightlike hypersurface of L' (c, f). Then we have
(i) ¢ can not be tangent to M, i.e., " # 0,
(ii) O can not be orthogonal to M,
(iil) ¢y # 0 for any nonzero null vector U on Lyt (c, f),
where Oi" denotes the transversal projection of O with respect to the decompo-
sition (3.3).

Proof. () Assume that J; is tangent to M. Then by decomposition (3.1),
O = w+ & where w € T'(S(TM)) and ¢ € T(Rad(TM)). Then we get
-1 = §(0,0:) = g(w,w) > 0, since any screen distribution S(T'M) on a
lightlike hypersurface of a Lorentzian manifold is Riemannian, i.e., the induced
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metric on S(TM) is positive definite. This is a contradiction. Hence 0, can
not be tangent to M.

(ii) If O is orthogonal to M, then g(d, &) = 0 for any £ € I'(Rad(TM)), i.e.,
¢¢ = 0. This means that £ is spacelike, which contradicts.

(iii) By (2.1) U = ¢y0; + U. If ¢y = 0, U is spacelike, which leads to a
contradiction. O

Let (M, g) be a submanifold (degenerate or nondegenerate) of a semi-Rie-
mannian manifold (M, g). Let V be a vector bundle over M. If for any vectors
X and Y tangent to M, R(X, Y)V, C V, for each p € M, then the vector
bundle V is said to be curvature invariant. In particular, in case V = TM, M
is said to be curvature invariant ([11]).

Proposition 4.2. Let (M, g, S(TM)) be a lightlike hypersurface of LY (c, f)
and X, Y be any vector fields tangent to M. Then we have

(i) M is curvature invariant if and only if L' (c, f) is of constant cur-
vature,
(i) If S(TM) is curvature invariant, then L™ (c, f) is flat,
(iii) If Rad(TM) is curvature invariant, then L™ (c, f) is of constant cur-
vature,
(iv) Iftr(TM) is curvature invariant and rank(S(TM)) > 1, then L1 (c, f)
is flat or the screen distribution S(TM) is tangent to spacelike slices.
Proof. Let {¢, N} be a pair satisfying (3.2).
(i) M is curvature invariant if and only if
(4.1) G(R(X,Y)Z,&) =0, VZ € T(TM).
From which, using (2.1) and (2.2) we obtain
Boel{oxa(Y,Z) — dva(X, 2)} = 0.
Putting X = £ gives 6¢§§(Y, Z) = 0. Again, substituting Y = Z = PY (# 0)
gives f = 0, since S(T'M) is Riemannian and ¢ # 0 (Lemma 4.1(iii)). The
converse is clear.
(ii) S(T'M) is curvature invariant if and only if

(4.2) G(R(X,Y)PZ,€) =0 and g(R(X,Y)PZ,N) = 0.
The first equation and (2.2) show that
0=Boe{oxg(Y,PZ) — ¢y g(X,PZ)}.
Putting X =¢£,Y = PZ # 0 in this equation yields
Bezg(PZ,PZ) =0,
which means that 5 = 0. The second equation of (4,2) with 5 = 0 gives
0=o{g(Y,PZ)g(X,N) —g(X,PZ)g(Y,N)}.

From this equation with X = & and Y = PZ, we get a« = 0. Therefore
L1 (e, f) is flat.
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(iii) Rad(TM) is curvature invariant if and only if
9(R(X,Y)E, PZ) =0,

which is the first equation of (4.2).
(iv) tr(T'M) is curvature invariant if and only if

(4.3) J(R(X,Y)N,PZ)=0.
It is clear from this equation and (2.2) that
+ B{oxong(Y,PZ) — oy ong(X, PZ) — dpz(dxg(Y,N) — ¢y g(X, N))},
Putting X = ¢ and Y = PY gives

(4.4) —ag(PY,PZ) + B{¢cong(PY,PZ) + ¢pydpz} = 0.

In (4.4) taking PY and PZ to be orthogonal in S(T'M) yields Sépydpz = 0.
Hence 8 =0 or ¢pyodpz = 0. In case of =0, it is clear from (4.4) that o = 0,
i.e., LY (c, f) is flat. For the case which ¢py¢pz = 0 for any orthogonal pair
{PY,PZ} in S(TM), we show that ¢py = 0 for any PY € I'(S(T'M)). Fix a
point p € M and suppose that ¢py # 0, PY € S(T,M). Then ¢ppz = 0 for any
PZ € {PY}* where {PY }* denotes the orthogonal complement of the linear
span of {PY} in S(7,M). By continuity we can choose PY'(# 0) sufficiently
near to PY. Then ¢ py = 0 for any PW € {PY'}+. Now consider that S(7, M)
is spanned by {PY}* and {PY’}+, so PY is a linear combination of PZ’s in
{PY}+ and PW’s in {PW}+. Then ¢py = 0, which leads to a contradiction.
Thus ¢pydpz = 0 for any orthogonal pair {PY, PZ} in S(T'M) implies that
¢py =0. O

Proposition 4.3. Let (M, g, S(TM)) be a lightlike hypersurface of L' (c, f).
If the second fundamental form h is parallel, then L (c, f) has constant cur-
vature.

Proof. Assume that the second fundamental form £ is parallel, i.e., (Vxh)(Y, Z)
=0,VX,Y,Z € I'(TM), which is equivalent to

(45) (VxB)(Y, Z) = —1(X)B(Y, 2).
From which and (3.13) we get g(R(X,Y)Z,£&) =0, i.e., M is curvature invari-
ant. Hence from Proposition 4.5(i), L?**(c, f) has constant curvature. O

Proposition 4.4. Let (M, g, S(TM)) be a lightlike hypersurface of Ly (c, f)
with non-constant curvature and rank(S(TM)) > 1. Assume that one of the
conditions (i) ~ (iil) is satisfied:

(i) n is parallel,

(ii) The screen second fundamental form h* is parallel,

(iii) (VxANY = (VyA)nX VX, Y €e I(TM) and VN € tr(TM).
Then the screen distribution S(T'M) is tangent to spacelike slices.
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Proof. (i) Differentiating n(Y) = g(Y, N) in the direction X and our assump-
tion yield

—4(Y, AxX) + 7(X)g(Y, N) = 0, VX,Y € T(TM).
Putting Y = PY in this equation yields C(X, PY) = 0 with the aid of (3.9).

It follows from (3.15) that g(R(X,Y)PZ,N) = 0, so the transversal bundle
tr(TM) is curvature invariant. Thus Proposition 4.2(iv) shows that S(T'M) is
tangent to spacelike slices.

(ii) Assume that the screen second fundamental form h* is parallel, i.e.,
(Vxh*)(Y,PZ)=0,VX,Y,Z € I'(T'M), which is equivalent to
(4.6) (VxO)Y, PZ) = 7(X)C(Y, PZ),
where (Vxh*)(Y, PZ) = Vi(h* (Y, PZ))~h*(Vx Y, PZ)~h*(Y, Vi PZ). From

this and (3.15) we obtain g(R(X,Y)PZ, N) = 0. By the same argument S(T'M)
is tangent to spacelike slices.

(iii) From our assumption and (3.18) we also have g(R(X,Y)PZ,N) = 0.
Therefore we complete the proof. O

5. Totally umbilical lightlike hypersurfaces
Let (M, g,S(TM)) be a lightlike hypersurface of a semi-Riemannian mani-

fold (M, g).
If on any coordinate neighborhood U in M there is a smooth function p such
that

(5.1) B(X,Y) = pg(X,Y), VX,Y € I(TM),

then M is said to be totally umbilical. In case p = 0 on U we say that M is
totally geodesic.

A screen distribution S(T'M) is called totally umbilical in M if there exists
a smooth function A on any coordinate neighborhood i/ in M such that

(5.2) C(X,PY) = Xg(X,Y), VX,Y € T(TM).

In case A = 0 (resp. A # 0) we say that S(T'M) is totally geodesic (resp. proper
totally umbilical) ([6], [7], [8]).

Theorem 5.1. Let (M, g, S(TM)) be a totally umbilical lightlike hypersurface
of L?H(c, f). Then p satisfies the partial differential equations

(5.3) &(p) — p* + p7(€) + Bog = 0,
(5.4) PX(p) + pr(PX) + Boeppx =0, VX € I'(T'M).
In case of (5.4) we have assumed rank(S(TM)) > 1.
Proof. Substituting (5.1) and (2.2) into (3.13) yields
(5.5) Boe{ovy(X, Z) — oxg(Y, Z)}
= {(X(p) — pP0(X) + pr(X)}g(Y, Z) — (Y (p) — p*n(Y) + pr(¥)}g(X, 2)
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for any X,Y, Z € T'(T'M), where we have used (3.10) and (3.11). Putting X = ¢
and Y = Z in this equation, we get (5.3).

Next, putting X = PX,Y = PY and Z = PZ in (5.5), and remembering
that S(T'M) is nondegenerate, we also have

{PX(p) + pr(PX) + Boedpx }PY = {PY(p) + p7(PY) + foeppy } PX.
Taking PX and PY to be linearly independent (rank(S(TM)) > 1) yields
(5.4). O

Theorem 5.2. Let (M,g,S(TM)) be a lightlike hypersurface of Ly (c, f)
such that the screen distribution S(TM) whose rank > 1 is totally umbilical.
Then X satisfies the partial differential equation

(5.6) PX(\) + A (PX) — Béndpx =0, VX € T(TM).

Furthermore if S(T M) is tangent to spacelike slices and proper totally umbilical,
then M is totally umbilical immersed in LY (c, f). In this case M is totally
geodesic if and only if X is a solution of the partial differential equation

EN) = AT(§) —a+ Bonde = 0.

Proof. Substituting (5.2) and (2.2) into (3.15) gives
(5.7)  A{X(\) = AT(X) — an(X) + Bonodx }g(PY, PZ) — \(X)B(PY, PZ)

={Y(\) = A7(Y) = an(Y) + Bén ¢y }g(PX, PZ) — M(Y)B(PX, PZ)

+ B{oxdpzn(Y) — ¢y dpzn(X)}
for any X,Y,Z € I(TM). Putting X = PX,Y = PY and Z = PZ in (5.7),
we get
{PX(A\) = A\(PX) + Bénopx }g(PY, PZ)

(5:8) — (PY(X) = Ar(PY) + Boopy }o(PX, PZ).

Then by the same argument as in the proof of the previous theorem, we obtain
(5.6).

Next, substituting ¢pz = 0 (since S(T'M) is tangent to spacelike slices) and
X = ¢ into (5.7), we have

(5.9) {6(N) = AT(€) — a + Bonde g(PY, PZ) = AB(PY, PZ).

The rest statement follows from this equation. O

Corollary 5.3. Let (M,g,S(TM)) be a lightlike hypersurface of LY (c, f)
such that the screen distribution S(T M) is proper totally umbilical. If S(TM) is
tangent to spacelike slices, then M is either totally umbilical or totally geodesic.

Proof. The proof follows from (5.9). O
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6. Null sectional curvatures and null Ricci curvatures

Let (M, g) be a semi-Riemannian manifold and p € M. Given a nonzero null
vector U € T, M and a null plane H of T;,M containing U, the null sectional
curvature at p € M with respect to U in the plane H is defined by

Ky(p,H) = g(Rp;();IQELX)7

where X is any non-null vector in H ([3], [6], [7], [8]). In a similar way we
define the null sectional curvature on a lightlike hypersurface (M, g) of (M, g)

as follows;
9(Ry(X, )¢, X)

9(X,X) 7
where H is a null plane of T),M containing a nonzero null vector £ and X is
any non-null vector in H.

Clearly the null sectional curvature of a null plane H is independent of the
choice of non-null vectors in H, but depends quadratically on the null vectors.
For a geometric interpretation of the null sectional curvature see [1].

Ke¢(p, H) =

Proposition 6.1. The null sectional curvature at p € LY (c, f) is given by
(6.1) Ky(p, H) = —ag(X,U)* + B2¢xug(U, X) - 67,

where H is the null plane spanned by a null vector U and a unit spacelike vector
X.

Proof. Tt follows from (2.1) and (2.2). O

Theorem 6.2. Let (M,g,S(TM)) be a lightlike hypersurface of L' *(c, f).
Then Ly (¢, f) is of constant curvature if and only if at a single point p € M,
either K¢(p, H) = 0 or K¢(p, H) = 0 where H C T,,(M) is a null plane which
is spanned by any & € Rad(T,M) and any non-null vector X € T,(M).

Proof. Let £ € Rad(T,M) and X € T,(M) be a unit spacelike vector. Then
we get from (4.1)

Combining this with the Gauss equation (3.12) and (3.10) yields
From (6.2) with ¢¢ # 0 (Lemma 4.1(iii)) we complete the proof. O

The Ricci tensor on LT (¢, f) is given by
(6.3) Ric(X,Y) = trace{Z — R(X, Z)Y'}
for any vector fields X and ¥ on Lif“(c, f). From (3.12) and (3.14) the relation
between the Ricci tensor Ric of M and the induced Ricci tensor Ric on M is
given by
(6.4) B B
Ric(X,Y) = Ric(X,Y) — B(X,Y)TrAy + g(AgY, AN X) + g(R(§,Y) X, N),
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where {£, N} is a pair satisfying (3.2) and TrAy denotes the trace of An (cf.
2, [9)).

Since the induced connection V on M is not a Levi-Civita connection, Ric
is not symmetric. In [9] some geometric objects for the induced Ricci tensor to
be symmetric are studied.

Proposition 6.3. The Ricci tensor Ric on LT (c, f) is given by

(6.5) Ric(X,Y) = —ang(X,Y) + B{(n — D)ox¢y — (X, Y)}

for any vector fields X and Y on L7 (c, f).

Proof. Tt follows from (2.1), (2.2) and (6.3). O

Theorem 6.4. For any nonzero null direction U on LT (c, f) (n > 2),
Ric(U,U) =0 if and only if L™ (c, f) is of constant sectional curvature.

Proof. Tt follows from (6.5) that for any nonzero null vector U on LT+ (c, f)
Ric(U,U) = (n—1)B¢7,
which and ¢y # 0 (Lemma 4.1(iii)) complete the proof. O

Theorem 6.5. Let (M,g,S(TM)) be a lightlike hypersurfaces of Ly (c, f)
(n > 2). Then Ric(¢,€) = 0, V¢ € T(Rad(TM)) if and only if L™ (c, f) is of
constant curvature.

Proof. From (6.4) and (6.5) we get

Ric(€,€) = Ric(€,€) = (n — 1)B¢;
with the aid of (3.8) and (3.10). The proof follows from this equation. O

Remark 6.6. In any two-dimensional Lorentzian manifold Ricci curvature al-
ways vanishes in any null direction ([3]).
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