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ON LIGHTLIKE SUBMANIFOLDS OF A GRW SPACE-TIME

Tae Ho Kang

Abstract. This paper provides a study of lightlike submanifolds of a
generalized Robertson-Walker (GRW) space-time. In particular, we in-
vestigate lightlike submanifolds with curvature invariance, parallel second
fundamental forms, totally umbilical second fundamental forms, null sec-
tional curvatures and null Ricci curvatures, respectively.

1. Introduction

In general relativity, a space time is a four-dimensional differentiable man-
ifold equipped with a Lorentzian metric. One of the important cosmological
models in general relativity is the family of Robertson-Walker space-times:

L4
1(c, f) := (I ×f F, ḡ), ḡ = −dt2 + f2(t)gc.

Explicitly, L4
1(c, f) is a warped product with Lorentzian metric ḡ of an open

interval I and a three-dimensional Riemannian manifold (F, gc) of constant
curvature c with a warping function f > 0, which is defined on an open interval
I in R1

1.

Recently, B. Y. Chen and J. Van der Veken ([3]) studied nondegenerate
surfaces (i.e., spatial or Lorentzian) of a Robertson-Walker space-time from
differential geometric view point. In [9], the author studied lightlike (degener-
ate, null) hypersurfaces of a generalized Robertson-Walker space-time (GRW),
which is also defined as a warped product Ln+1

1 (c, f) = I ×f F, where F is an
n-dimensional Riemannian manifold of constant curvature c.

In [4], B. Y. Chen and S. W. Wei provided a general study of submanifolds
in the Riemannian warped product I ×f F, ḡ = dt2 + f2(t)gc.

In this article we give a study of lightlike submanifolds of a GRW space-time
Ln+1
1 (c, f). In particular, we investigate lightlike submanifolds with curvature

invariance and parallel second fundamental forms (Section 4), totally umbili-
cal lightlike submanifolds (Section 5), null sectional curvatures and null Ricci
curvatures (Section 6), respectively.
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2. Basics on GRW space-times

In this section, we review some results of the connection and curvature of a
GRW space-time, which follow from general results on warped product ([11]).

Consider a GRW space-time

Ln+1
1 (c, f) = (I ×f F, ḡ), ḡ = −dt2 + f2(t)gc,

where f is a smooth positive function on I, and (F, gc) is an n-dimensional
Riemannian manifold of constant sectional curvature c. The standard choices
for F are Sn, En and Hn, with curvature 1, 0,−1, respectively.

Let π and σ be the natural projections of I × F onto I and F, respectively.
Let L(I) and L(F ) be the set of horizontal and vertical lifts of vector fields on
I and F to I ×f F, respectively. Let ∂t ∈ L(I) denote the horizontal lift vector

field to I ×f F of the standard vector field d
dt

on I.

By a spacelike slice of Ln+1
1 (c, f) = (I ×f F, ḡ) we mean a hypersurface of

Ln+1
1 (c, f) given by a fibre S(t0) := π−1(t0) with metric f2(t0)gc.

For each vector X tangent to Ln+1
1 (c, f), we put

(2.1) X = φX∂t + X̂,

where φX = −ḡ(X, ∂t) and X̂ is the vertical component of X.

The following two lemmas are well-known ([11]).

Lemma 2.1. Let ∇̄ be the Levi Civita connection of Ln+1
1 (c, f). For vectors

fields X,Y ∈ L(F ) we have

(1) ∇̄∂t
∂t = 0,

(2) ∇̄∂t
X = ∇̄X∂t = (ln f)′X,

(3) ḡ(∇̄XY, ∂t) = −ḡ(X,Y )(ln f)′,

(4) ̂̄∇XY is the vertical lift of ∇F
XY, where ∇F is the Levi Civita connection

of F.

Lemma 2.2. Let R̄ be the curvature tensor of Ln+1
1 (c, f). If X,Y, Z ∈ L(F ),

then

(1) R̄(∂t, X)∂t =
f ′′

f
X,

(2) R̄(X, ∂t)Y = −ḡ(X,Y ) f
′′

f
∂t,

(3) R̄(X,Y )∂t = 0,

(4) R̄(X,Y )Z = (f ′)2+c

f2 (ḡ(Y, Z)X − ḡ(X,Z)Y ).

It follows from (2.1) and (2) in Lemma 2.1 that

(2.2) ∇̄X(f(t)∂t) = f ′(t)X

for any vector field X on Ln+1
1 (c, f).

On the other hand we can agglomerate (1) ∼ (4) in Lemma 2.2 together into
a single form (2.3) ([9]).
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Proposition 2.3. For any vector fields X,Y, Z on Ln+1
1 (c, f)

R̄(X,Y )Z = λ{ḡ(Y, Z)X − ḡ(X,Z)Y }(2.3)

+ µ{φXφZY − φY φZX + (φX ḡ(Y, Z)− φY ḡ(X,Z))∂t},

where λ = f ′2+c
f2 , µ = ff ′′

−(f ′2+c)
f2 .

Remark 2.4. (1) Ln+1
1 (c, f) is flat if and only if f(t) = at+ b(c = −a2),

(2) Ln+1
1 (c, f) has constant curvature k2 > 0 if and only if f(t) = aekt +

be−kt, c = 4k2ab,
(3) Ln+1

1 (c, f) has constant curvature−k2 < 0 if and only if f(t) = a sin(kt)+
bcos(kt), c = −4k2(a2 + b2).

(4) Ln+1
1 (c, f) is of constant curvature if and only if µ = 0.

3. Basics on lightlike submanifolds

Let (M̄, ḡ) be an (m+n)-dimensional semi-Riemannian manifold of constant
index ν, 1 ≤ ν < m+ n and (M, g) be a submanifold of (M̄, ḡ) of codimension
n.

Consider the so-called radical distribution Rad(TM) := TM∩TM⊥. We say
that (M, g) is a lightlike submanifold of (M̄, ḡ) if Rad(TM) defines a nonzero
differentiable distribution on M of rank(Rad(TM)) =: r > 0.

Let S(TM) be a complementary distribution of Rad(TM) in TM . Then
S(TM) is orthogonal to Rad(TM) and nondegenerate with respect to ḡ and
TM has the orthogonal direct sum

TM = Rad(TM) ⊥ S(TM).

Let S(TM⊥) be a complementary distribution of Rad(TM) in TM⊥. Then
TM⊥ has the following orthogonal direct decomposition

TM⊥ = Rad(TM) ⊥ S(TM⊥).

Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector
bundles (resp. the transversal vector bundle and the lightlike transversal vec-

tor bundle) to TM in TM̄ |M and Rad(TM) in S(TM⊥)⊥, respectively, where
S(TM⊥)⊥ denotes the orthogonal complementary vector subbundle to S(TM⊥)
in S(TM)⊥, i.e., S(TM)⊥ = S(TM⊥) ⊥ S(TM⊥)⊥.

Then we have the following decompositions:

tr(TM) = ltr(TM) ⊥ S(TM⊥),(3.1)

TM̄ |M = S(TM) ⊥ {Rad(TM)⊕ ltr(TM)} ⊥ S(TM⊥)(3.2)

= TM ⊕ tr(TM).

There are four possible cases on lightlike submanifolds. If an m-dimensional
lightlike submanifold (M, g) of (M̄, ḡ) with codimension n is
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case 1 : r-lightlike if 1 ≤ r < min{m,n},
case 2 : co-isotropic if r = n < m, S(TM⊥) = {0},
case 3 : isotropic if r = m < n, S(TM) = {0},
case 4 : totally lightlike if r = m = n, S(TM) = {0} and
S(TM⊥) = {0}.

According to the decomposition (3.1) we put

∇̄XY = ∇XY + h(X,Y )(3.3)

= ∇XY + hl(X,Y ) + hs(X,Y ), ∀X,Y ∈ Γ(TM),

∇̄XN = −ANX +∇l
XN +Ds(X,N), N ∈ Γ(ltr(TM)),(3.4)

∇̄XW = −AWX +∇s
XW +Dl(X,W ), W ∈ Γ(S(TM⊥)),(3.5)

where ∇XY , ANX,AWX ∈ Γ(TM), h(X,Y ) ∈ Γ(tr(TM)), hl(X,Y ), ∇l
XN ,

Dl(X,W ) ∈ Γ(ltr(TM)), and hs(X,Y ), Ds(X,N), ∇s
XW ∈ Γ(S(TM⊥)).

We note that the lightlike second fundamental form hl of a lightlike sub-
manifold M does not depend on S(TM), S(TM⊥) and ltr(TM).

Making use of (3.3) ∼ (3.5) and the fact that ∇̄ is a metric connection, we
obtain

ḡ(hl(X,Y ), ξ) + ḡ(Y, hl(X, ξ)) + g(Y,∇Xξ) = 0,(3.6)

ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX,Y ),(3.7)

ḡ(ANX,N ′) + ḡ(AN ′X,N) = 0,(3.8)

ḡ(Ds(X,N),W ) = ḡ(N,AWX),(3.9)

where ξ ∈ Γ(Rad(TM)), W ∈ Γ(S(TM⊥)) and N,N ′ ∈ Γ(ltr(TM)).
From the decomposition TM = S(TM) ⊥ Rad(TM), we set

∇XPY = ∇∗

XPY + h∗(X,PY ),(3.10)

∇Xξ = −A∗

ξX +∇∗t
Xξ(3.11)

forX,Y ∈Γ(TM) and ξ∈Γ(Rad(TM)), where {∇∗

XPY,A∗

ξX} and {h∗(X,PY ),

∇∗t
Xξ} belong to Γ(S(TM)) and Γ(Rad(TM)), respectively.
It follows that ∇∗ and ∇∗t are linear connections on distributions S(TM)

and Rad(TM), respectively. From (3.10) and (3.11) we obtain

ḡ(hl(X,PY ), ξ) = g(A∗

ξX,PY ),(3.12)

ḡ(h∗(X,PY ), N) = g(ANX,PY ), ∀X,Y ∈ Γ(TM).(3.13)

In general, the induced connection ∇ on M is not a metric connection, since

(3.14) (∇Xg)(Y, Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ).

Now we give some structure equations of lightlike submanifolds.
Let (M, g, S(TM), S(TM⊥)) be an m-dimensional r-lightlike submanifold of

a semi-Riemannian manifold (M̄, ḡ). Denote by R̄, R,Rl and R∗t the curvature
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tensors of ∇̄,∇,∇l and ∇∗t, respectively. The following structure equations
hold:

R̄(X,Y )Z = R(X,Y )Z +Ahl(X,Z)Y −Ahl(Y,Z)X(3.15)

+Ahs(X,Z)Y −Ahs(Y,Z)X

− (∇Xhl)(Y, Z)− (∇Y h
l)(X,Z)

+Dl(X,hs(Y, Z))−Dl(Y, hs(X,Z))− (∇Xhs)(Y, Z)

− (∇Y h
s)(X,Z) +Ds(X,hl(Y, Z))−Ds(Y, hl(X,Z)),

R̄(X,Y )N = Rl(X,Y )N + hl(Y,ANX)− hl(X,ANY )(3.16)

+Dl(X,Ds(Y,N))−Dl(Y,Ds(X,N))

+ (∇Y A)(N,X)− (∇XA)(N, Y )

+ADs(X,N)Y −ADs(Y,N)X + (∇XDs)(Y,N)

− (∇Y D
s)(X,N) + hs(Y,ANX)− hs(X,ANY ),

ḡ(R̄(X,Y )N, ξ) = ḡ(Rl(X,Y )N, ξ)(3.17)

+ ḡ(hl(Y,ANX), ξ)− ḡ(hl(X,ANY, ξ)

+ ḡ(Ds(X,N), hs(Y, ξ))− ḡ(Ds(Y,N), hs(X, ξ)),

ḡ(R̄(X,Y )W ′,W ) = ḡ(Rs(X,Y )W ′,W )(3.18)

+ g(AW ′X,AWY )− g(AWX,AW ′Y )

+ ḡ(Dl(X,W ), AW ′Y )− ḡ(Dl(Y,W ), AW ′X)

+ ḡ(Dl(Y,W ′), AWX)− ḡ(Dl(X,W ′), AWY )

for any vector fields X,Y, Z ∈ Γ(TM), ξ ∈ Γ(Rad(TM)), N ∈ Γ(ltr(TM)) and
W,W ′ ∈ Γ(S(TM⊥)).

Let (M, g) be an r-lightlike submanifold of Ln+1
1 (c, f). Then r must be one,

because the index of Ln+1
1 (c, f) is equal to 1.

Here and in the sequel, we mean a lightlike submanifold M of Ln+1
1 (c, f) by

a 1-lightlike one unless otherwise stated.
From the decomposition (3.2) we get

indLn+1
1 (c, f) = indS(TM) + ind{Rad(TM)⊕ ltr(TM)}+ indS(TM⊥),

where ind(•) denotes the index of the metric tensor ḡ on •. Since {Rad(TM)⊕
ltr(TM)} is nondegenerate and of constant index one, both S(TM) and
S(TM⊥) are Riemannian vector bundles over M.

4. Curvature invariance and parallel second fundamental forms

To begin with we prepare the following lemma ([9]).
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Lemma 4.1. Let M be a lightlike submanifold of Ln+1
1 (c, f). Then

(1) ∂t can not be tangent to M, i.e., ∂tr
t 6= 0,

(2) ∂t can not be orthogonal to M,

(3) φU 6= 0 for any nonzero null vector U on Ln+1
1 (c, f),

where ∂tr
t denotes the transversal projection of ∂t with respect to the decompo-

sition (3.2).

Let (M, g) be a submanifold of a semi-Riemannian manifold (M̄, ḡ). If for
any vector fields X and Y on M R̄(X,Y )TpM ⊂ TpM for each p ∈ M, then
the submanifold M is said to be curvature invariant ([12]), where TpM denotes
the tangent space of M at the point p ∈ M.

Proposition 4.2. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f). Then M is curvature invariant if and only if Ln+1

1 (c, f) is of con-

stant curvature.

Proof. If M is curvature invariant, then

(4.1) ḡ(R̄(X,Y )Z, ξ) = 0, ∀Z ∈ Γ(TM), ξ ∈ Γ(Rad(TM)).

From which, using (2.1) and (2.3) we obtain

µφξ{φX ḡ(Y, Z)− φY ḡ(X,Z)} = 0.

Putting X = ξ gives µφ2
ξ ḡ(Y, Z) = 0. Again, putting Y = Z = PY (6= 0) gives

µ = 0, since S(TM) is Riemannian and φξ 6= 0 (Lemma 4.1(3)). The converse
follows from (2.3) and (4) in Remark 2.4. �

A lightlike submanifold (M, g) of a semi-Riemannian manifold (M̄, ḡ) is ir-
rotational ([10]) if

∇̄Xξ ∈ Γ(TM), ∀X ∈ Γ(TM), ξ ∈ Γ(Rad(TM)),

which is equivalent to

(4.2) hs(X, ξ) = 0, hl(X, ξ) = 0, ∀X ∈ Γ(TM), ξ ∈ Γ(Rad(TM))

with the aid of (3.1) and (3.3).

Proposition 4.3. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f). If M is irrotational and the lightlike second fundamental form hl is

parallel, then Ln+1
1 (c, f) has constant curvature.

Proof. Since the lightlike second fundamental form hl is parallel, i.e.,

(∇Xhl)(Y, Z) = 0, ∀X,Y, Z ∈ Γ(TM),

it follows from (3.15) that

(4.3) ḡ(R̄(X,Y )Z, ξ) = ḡ(Dl(X,hs(Y, Z)), ξ)− ḡ(Dl(Y, hs(X,Z)), ξ).

From which and (3.7) we get

ḡ(R̄(X,Y )Z, ξ) = ḡ(hs(X,Z), hs(Y, ξ))− ḡ(hs(Y, Z), hs(X, ξ)) = 0,
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which implies that M is curvature invariant. Hence we conclude from Propo-
sition 4.2 that Ln+1

1 (c, f) has constant curvature. �

Corollary 4.4. Let (M, g, S(TM), S(TM⊥)) be a co-isotropic submanifold of

Ln+1
1 (c, f), i.e., S(TM⊥) = {0}. If the lightlike second fundamental form hl is

parallel, then Ln+1
1 (c, f) has constant curvature.

Proof. It follows from (4.3) with hs = 0. �

5. Totally umbilical lightlike submanifolds

Let (M, g, S(TM), S(TM⊥)) be an m-dimensional lightlike submanifold of
a GRW space-time Ln+1

1 (c, f).

Consider the following local quasi-orthonormal field of frames of Ln+1
1 (c, f)

along M ([5]):

(5.1) {ξ,N,X1, . . . Xm−1,W1, . . . ,Wn−m},

where ξ andN are lightlike bases of Γ(Rad(TM)) and Γ(ltr(TM)), respectively
satisfying

(5.2) ḡ(N, ξ) = 1, ḡ(N,N) = 0,

{X1, . . . , Xm−1} and {W1, . . . ,Wn−m} are orthonormal bases Γ(S(TM)) and
Γ(S(TM⊥)), respectively. Throughout this paper, we adopt the following range
of indices:

a ∈ {1, . . . ,m− 1}; α ∈ {1, . . . , n−m}.

The local expressions corresponding to (3.3) ∼ (3.5) and (3.11) are respec-
tively given by (5.3) ∼ (5.5) and (5.6):

(5.3) ∇̄XY = ∇XY +B(X,Y )N +
n−m∑

α=1

hs
α(X,Y )Wα,

where B(X,Y ) = ḡ(hl(X,Y ), ξ), hs
α(X,Y ) = ḡ(hs(X,Y ),Wα).

∇̄XN = −ANX + ρ(X)N +
∑

α

τα(X)Wα,(5.4)

∇̄XWα = −AWα
X + να(X)N +

∑

β

θαβ(X)Wβ ,(5.5)

where

ρ(X) = ḡ(∇l
XN, ξ), τα(X) = ḡ(Ds(X,N),Wα),

να(X) = ḡ(Dl(X,Wα), ξ), θαβ(X) = ḡ(∇s
XWα,Wβ),

and

(5.6) ∇Xξ = −A∗

ξX − ρ(X)ξ.

Now we define locally the 1-form

η(X) = ḡ(X,N), ∀X ∈ Γ(TM).
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Then η defines locally the screen distribution S(TM) because X ∈ Γ(S(TM))
if and only if η(X) = 0. Furthermore we have:

Proposition 5.1. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f). If LXη = 0 for any vector field X tangent to M, then S(TM) is

integrable, where LX denotes the Lie derivative in the direction X.

Proof. It follows from (3.3) and (3.4) that

0 = (LXη)(Y )

= Xḡ(Y,N)− η([X,Y ])

= ḡ(∇XY,N)− ḡ(Y,ANX) + ρ(X)η(Y )− η([X,Y ]), ∀X,Y ∈ Γ(TM).

Putting Y = PY in this equation, and using (3.10) and (3.13) yield η([X,PY ])
= 0, which means that S(TM) is integrable. �

Let (M, g) be a 1-lightlike submanifold of a semi-Riemannian manifold
(M̄, ḡ). Then

hl(X, ξ) = 0, ∀X ∈ Γ(TM), ξ ∈ Γ(Rad(TM)),

which follows from putting Y = ξ in (3.6).

Proposition 5.2. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f). If the time like vector field ∂t belongs to the hyperbolic plane bundle

Rad(TM)⊕ ltr(TM), then

(5.7) φPX = φW = 0, φNhs(X, ξ) + φξD
s(X,N) = 0, 2φξφN = −1

where X ∈ Γ(TM), W ∈ Γ(S(TM⊥)), ξ ∈ Γ(Rad(TM)) and N ∈ Γ(ltr(TM)).

Proof. Using a local quasi-orthonormal field of frames satisfying (5.1) and (5.2)
we have

∂t = −
∑

a

φXa
Xa − φN ξ −

∑

α

φWα
Wα − φξN.

The assumption shows that

(5.8) φPX = 0, φW = 0, ∀X ∈ Γ(TM), W ∈ Γ(S(TM⊥)).

Moreover substituting ∂t = −φNξ − φξN into (2.2), we get for any vector field
X tangent to M

f ′(t)X = (Xf)(−φNξ − φξN)− f(t){(XφN )ξ + φN (∇Xξ + hs(X, ξ))

+ (Xφξ)N + φξ(−ANX +∇l
XN +Ds(X,N))}.

Taking S(TM⊥)-part in both sides, we get the second one. The last one follows
from computing −1 = ḡ(∂t, ∂t). �

A lightlike submanifold (M, g) of a semi-Riemannian manifold (M̄, ḡ) is said
to be totally umbilical ([6]) if there is a smooth transversal vector field H ∈
Γ(tr(TM)) on M such that for all X,Y ∈ Γ(TM))

(5.9) h(X,Y ) = Hg(X,Y ).
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The definition does not depend on the choice of both the screen distribution
S(TM) and the screen transversal vector bundle S(TM⊥).

Making use of (3.3), it is easy to see that M is totally umbilical if and
only if, on any coordinate neighborhood U in M there is smooth vector fields
Hl ∈ Γ(ltr(TM)), Hs ∈ Γ(S(TM⊥)), and smooth functions Hl

0 ∈ F (ltr(TM)),
Hs

α ∈ F (S(TM⊥)) such that

hl(X,Y ) = Hlḡ(X,Y ), hs(X,Y ) = Hsḡ(X,Y ),(5.10)

B(X,Y ) = Hl
0ḡ(X,Y ), hs

α(X,Y ) = Hs
αḡ(X,Y ),(5.11)

where Hl
0 = ḡ(Hl, ξ) , Hs

α = ḡ(Hs,Wα).
Moreover it is clear from (3.7) and (3.12) that on each coordinate neighbor-

hood U in M the followings hold when M is totally umbilical:

(5.12) Dl(X,Wα) = 0 (i.e., να(X) = 0), A∗

ξX = Hl
0PX,P (AWα

X) = Hs
αPX.

Theorem 5.3. Let (M, g, S(TM), S(TM⊥)) be a totally umbilical lightlike sub-

manifold of Ln+1
1 (c, f). Then the functions Hl

0 and Hs
α satisfy the following

partial differential equations:
(1) ξHl

0 + ρ(ξ)Hl
0 − (Hl

0)
2 + µφ2

ξ = 0,

(2) ξHs
α + τα(ξ)H

l
0 −Hl

0H
s
α −

∑
β H

s
βθβα(ξ) + µφξφWα

= 0,

(3) PX(Hl
0) + ρ(PX)Hl

0 + µφPXφξ = 0,
(4) PX(Hs

α)−
∑

β H
s
βθβα(PX) + τα(PX)Hl

0 + µφPXφWα
= 0,

(5)

R(X,Y )Z = {λX +Hl
0ANX +

∑

α

Hs
αAWα

X}g(Y, Z)

− {λY +Hl
0ANY +

∑

α

Hs
αAWα

Y }g(X,Z)

+ µ{φXφZY − φY φZX − (φX ḡ(Y, Z)− φY ḡ(X,Z))∂T
t },

where ∂T
t denotes the tangential projection of ∂t with respect to the decomposi-

tion (3.2).

Proof. Making use of (3.15) and our assumption, we obtain

(5.13) ḡ(R̄(X,Y )ξ, PZ) = ḡ((∇Y h
l)(X,PZ), ξ)− ḡ((∇Xhl)(Y, PZ), ξ)

for X,Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)) and PZ ∈ Γ(S(TM)). The first term in
the right hand side of (5.13) is computed as follows:

ḡ((∇Y h
l)(X,PZ), ξ)(5.14)

= {(YHl
0)g(X,PZ) + ρ(Y )Hl

0g(X,PZ)}+ (Hl
0)

2η(X)g(Y, PZ).

On the other hand, it is clear from (2.3) that

(5.15) ḡ(R̄(X,Y )ξ, PZ) = µ{φXφξg(Y, PZ)− φY φξg(X,PZ)}.
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Substituting (5.14) and (5.15) into (5.13), we get

{YHl
0 + ρ(Y )Hl

0 − η(Y )(Hl
0)

2 + µφY φξ}g(X,PZ)(5.16)

−{XHl
0 + ρ(X)Hl

0 − η(X)(Hl
0)

2 + µφXφξ}g(Y, PZ) = 0.

Substituting X = ξ and Y = PZ into (5.16) gives the equation (1). In the
similar way calculating ḡ(R̄(X,Y )W,PZ) = −ḡ(R̄(X,Y )PZ,W ) with (3.15)
we have

{YHs
α −

∑

β

Hs
βθβα(Y )−Hs

αH
l
0η(Y ) +Hl

0τα(Y ) + µφY φWα
}g(X,PZ)

(5.17)

− {XHs
α −

∑

β

Hs
βθβα(X)−Hs

αH
l
0η(X) +Hl

0τα(X) + µφXφWα
}g(Y, PZ)=0.

Also putting X = ξ and Y = PZ in (5.17) yields (2). The equations (3) and
(4) can be also obtained from substituting X = PX and Y = PY in (5.16) and
(5.17), respectively. The last equation (5) follows from (2.3) and (3.15). Thus
we complete the proof. �

From (5.7) we obtain:

Proposition 5.4. Let (M, g, S(TM), S(TM⊥)) be a totally umbilical light-

like submanifold of Ln+1
1 (c, f). If ∂t belongs to the hyperbolic plane bundle

Rad(TM)⊕ ltr(TM), then Ds(X,N) = 0, or equivalently τα = 0.

In case Hl
0 6= 0 and Hs

α 6= 0 on any local neighborhood U of M , we say that
M is proper totally umbilical.

Theorem 5.5. Let (M, g, S(TM), S(TM⊥)) be a proper totally umbilical light-

like submanifold of Ln+1
1 (c, f). The followings are equivalent:

(1) S(TM) is integrable.

(2) AN is self-adjoint on Γ(S(TM)) with respect to g.

(3) dρ(X,Y ) = µ
2 (φY η(X)− φXη(Y ))φξ.

Proof. The equivalence between (1) and (2) follows from (3.10) and (3.13) (cf.
[5], [7]).

By direct calculation we obtain from (5.6)

(5.18) 2dρ(X,Y ) = X(ρ(Y ))− Y (ρ(X))− ρ([X,Y ]) = ḡ(Rl(X,Y )N, ξ).

Substituting (3.16) into (5.18), we have

(5.19) 2dρ(X,Y ) = ḡ(R̄(X,Y )N, ξ) + ḡ(hl(X,ANY ), ξ)− ḡ(hl(Y,ANX), ξ),

where we have used the assumption that M is totally umbilical. Making use of
(2.3) and (5.10), the equation (5.19) is reduced to
(5.20)

2dρ(X,Y ) = µ(φY φξη(X)− φXφξη(Y )) +Hl
0(g(PX,ANY )− g(PY,ANX)).

The equivalence between (2) and (3) follows from (5.20). �
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Theorem 5.6. Let (M, g, S(TM), S(TM⊥)) be a totally umbilical lightlike sub-

manifold of Ln+1
1 (c, f). Then the screen transversal connection ∇s on M is flat,

i.e.,

dθαβ =
1

2

∑

γ

θαγ ∧ θγβ.

Proof. From (3.18) we have

ḡ(Rs(X,Y )Wα,Wβ)

= ḡ(R̄(X,Y )Wα,Wβ) + g(AWα
X,AWβ

Y )− g(AWβ
X,AWα

Y ).

Substituting (2.3) into this equation and using the third one in (5.12) we obtain

ḡ(Rs(X,Y )Wα,Wβ) = 0.

This means that Rs = 0.
Since θαβ(X) = ḡ(∇s

XWα,Wβ), we get

2dθαβ(X,Y ) = X(θαβ(Y ))− Y (θαβ(X))− θαβ([X,Y ])

= ḡ(Rs(X,Y )Wα,Wβ) + ḡ(∇s
Y Wα,∇

s
XWβ)− ḡ(∇s

XWα,∇
s
Y Wβ)

=
∑

γ

(θαγ ∧ θγβ)(X,Y ),

where we have used ∇s
XWα =

∑
β θαβ(X)Wβ . Thus we complete the proof. �

Theorem 5.7. Let (M, g, S(TM), S(TM⊥)) be a totally umbilical lightlike sub-

manifold of Ln+1
1 (c, f). If the lightlike second fundamental form hl is parallel,

then we get

(5.21) Hl
0 = 0.

If the screen second fundamental form hs is parallel, then the equations hold:

(5.22) Hl
0H

s
α = 0, XHs

α =
∑

β

θαβ(X)Hs
β .

Proof. The covariant derivatives of the lightlike second fundamental form hl

and the screen second fundamental form hs are respectively defined as follows:

(∇Xhl)(Y, Z) = ∇l
X(hl(Y, Z))− hl(∇XY, Z)− hl(Y,∇XZ),(5.23)

(∇Xhs)(Y, Z) = ∇s
X(hs(Y, Z))− hs(∇XY, Z)− hs(Y,∇XZ).(5.24)

It is clear from our assumptions that (5.23) and (5.24) are reduced to (5.25)
and (5.26), respectively.

(XHl
0)g(Y, Z) + (Hl

0)
2{η(Z)g(X,Y ) + η(Y )g(X,Z)}(5.25)

+Hl
0ρ(X)g(Y, Z) = 0,

(XHs
α)g(Y, Z) +Hl

0H
s
α{η(Z)g(X,Y ) + η(Y )g(X,Z)}(5.26)

+
∑

β

Hs
βθβα(X)g(Y, Z) = 0.
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Putting Z = ξ in (5.25), we get (5.21). (5.22) follows from putting Y = PY = Z

in (5.26). �

Corollary 5.8. Let (M, g, S(TM), S(TM⊥)) be a totally umbilical, co-isotropic

submanifold of Ln+1
1 (c, f). If the lightlike second fundamental form hl is par-

allel, then M is totally geodesic.

Corollary 5.9. If (M, g, S(TM), S(TM⊥)) is a totally umbilical submanifold

of Ln+1
1 (c, f) and the lightlike second fundamental form hl is parallel, then

Ln+1
1 (c, f) is of constant curvature.

Proof. It is clear from the equation (1) in Theorem 5.4 and (3) in Lemma
4.1. �

Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of Ln+1
1 (c, f). Then

the screen distribution S(TM) is said to be totally umbilical if on any coordinate
neighborhood U ⊂ M there exists a smooth function Λ0 such that

(5.27) h∗

0(X,PY ) = Λ0g(X,PY ), ∀X,Y ∈ Γ(TM),

where h∗

0(X,PY ) = ḡ(h∗(X,PY ), N). In case Λ0 = 0 (resp. Λ0 6= 0) we say
that S(TM) is totally geodesic (resp. proper totally umbilical) ([6]).

In case S(TM) is totally umbilical, it is clear from (3.8), (3.13) and (5.27)
that

(5.28) ḡ(ANX,N) = 0, ANX = Λ0PX.

Theorem 5.10. Let (M, g, S(TM), S(TM⊥)) be an m(> 2)-dimensional to-

tally umbilical lightlike submanifold of Ln+1
1 (c, f). If the screen distribution

S(TM) is totally umbilical and ∂t belongs to the hyperbolic plane bundle

Rad(TM)⊕ ltr(TM),

then Λ0 satisfies the partial differential equations:
(1) XΛ0 − ρ(X)Λ0 − η(X)Λ0H

l
0 − λη(X)− 1

2µη(X) = 0, ∀X ∈ Γ(TM),

(2) ξΛ0 − ρ(ξ)Λ0 − Λ0H
l
0 − λ− 1

2µ = 0.

Proof. From (3.16), we obtain

(5.29) ḡ(R̄(X,Y )N,PZ) = ḡ((∇Y A)(N,X)− (∇XA)(N, Y ), PZ),

with the aid of Proposition 5.4. Making use of (3.9), (3.12), (3.16) and (5.28),
the equation (5.29) is reduced to

ḡ(R̄(X,Y )N,PZ) = (Y Λ0)g(PX,PZ)− ρ(Y )Λ0g(PX,PZ)

+ η(X)Λ0H
l
0g(Y, PZ)− (XΛ0)g(PY, PZ)

− ρ(X)Λ0g(PY, PZ) + η(Y )Λ0H
l
0g(X,PZ).

Substituting (2.3) into the left hand side in this equation gives

{Y Λ0 − ρ(Y )Λ0 − η(Y )Λ0H
l
0 − λη(Y )−

1

2
µη(Y )}PX
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= {XΛ0 − ρ(X)Λ0 − η(X)Λ0H
l
0 − λη(X)−

1

2
µη(X)}PY.

where we have used (5.7) and Proposition 5.4. Since the rank of S(TM)> 1,
this equation yields (1). (2) follows from putting X = ξ in (1). �

The type mumber t∗(p) of the screen distribution S(TM) is defined by the
rank of the shape operator A∗

ξ at the point p ∈ M .

Theorem 5.11. Let (M, g, S(TM), S(TM⊥)) be a screen totally umbilical 1-

lightlike submanifold of a semi-Reimannian manifold (M̄, ḡ). If the screen sec-

ond fundamental form h∗ is parallel and t∗(p) ≥ 1 at any point p ∈ M, then

S(TM) is totally geodesic.

Proof. The covariant derivative of the screen second fundamental form h∗ is
defined as follows:

(5.30) (∇Xh∗)(Y, PZ) = ∇∗t
X(h∗(Y, PZ))− h∗(∇XY, PZ)− h∗(Y,∇∗

XPZ).

Substituting h∗(Y, PZ) = Λ0g(Y, PZ)ξ and our assumption into (5.30) gives

0 = (XΛ0)g(Y, PZ)ξ + Λ0(∇Xg)(Y, PZ)ξ + Λ0g(Y, PZ)∇∗t
Xξ.

It follows from (3.6) and (3.14) that

{(XΛ0)ξ + Λ0∇
∗t
Xξ}g(Y, PZ) + Λ0η(Y )g(A∗

ξX,PZ)ξ = 0.

Putting Y = ξ in this equation gives Λ0g(A
∗

ξX,PZ)ξ = 0, which means that
Λ0A

∗

ξX = 0. The assumption on the type number gives Λ0 = 0. �

6. Null sectional curvatures and null Ricci curvatures

Let (M̄, ḡ) be a semi-Riemannian manifold and p ∈ M̄. Given a nonzero null
vector U ∈ TpM̄ and a null plane H of TpM̄ containing U, the null sectional

curvature at p ∈ M̄ with respect to U in the plane H is defined by

K̄U (p,H) =
ḡ(R̄p(X,U)U,X)

ḡ(X,X)
,

where X is any non-null vector in H ([2], [5], [6], [7]). In a similar way we
define the null sectional curvature on a lightlike submanifold (M, g) of (M̄, ḡ)
as follows:

Kξ(p,H) =
g(Rp(X, ξ)ξ,X)

g(X,X)
,

where H is a null plane of TpM containing a nonzero null vector ξ and X is
any non-null vector in H.

Clearly the null sectional curvature of a null plane H is independent of the
choice of non-null vectors in H, but depends quadratically on the null vectors.
For a geometric interpretation of the null sectional curvature see [1].
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Theorem 6.1. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f). If M is irrotational, then Ln+1

1 (c, f) is of constant curvature if

and only if at a single point p ∈ M, either Kξ(p,H) = 0 or K̄ξ(p,H) = 0 where

H ⊂ TpM is a null plane which is spanned by any ξ ∈ Rad(TpM) and any

non-null vector X ∈ TpM.

Proof. Let ξ ∈ Rad(TpM) and X ∈ TpM be a unit spacelike vector. Then we
get from (2.3)

K̄ξ(p,H) = −µφ2
ξ .

Combining this with the Gauss equation (3.15) and (4.2) yields

(6.1) K̄ξ(p,H) = Kξ(p,H) = −µφ2
ξ.

From (6.1) with φξ 6= 0(Lemma 4.1(3)) we complete the proof. �

The Ricci tensor on a semi-Riemannian manifold (M̄, ḡ) is defined as

R̄ic(X,Y ) = trace{Z → R̄(X,Z)Y }, ∀X,Y ∈ Γ(TM̄).

Making use of a quasi-orthonormal field of frames of Ln+1
1 (c, f) along M satis-

fying (5.1) and (5.2), the Ricci tensor R̄ic of Ln+1
1 (c, f) is given by

R̄ic(X,Y ) =
∑

a

g(R̄(X,Xa)Y,Xa) + ḡ(R̄(X, ξ)Y,N)(6.2)

+
∑

α

ḡ(R̄(X,Wα)Y,Wα) + ḡ(R̄(X,N)Y, ξ).

The induced Ricci tensor on a lightlike submaniold M of a semi-Riemannian
manifold (M̄, ḡ) is also defined as

R̆ic(X,Y ) = trace{Z → R(X,Z)Y }, ∀X,Y ∈ ΓTM.

Using the Gauss equation (3.15), we get:

Proposition 6.2. Let (M, g, S(TM), S(TM⊥)) be a 1-lightlike submanifold

of a semi-Riemannian manifold (M̄, ḡ). Then the induced Ricci tensor R̆ic is

given by

R̆ic(X,Y ) = R̄ic(X,Y )− TrAh(X,Y ) + g(ANX,A∗

ξY )(6.3)

+
∑

a

ḡ(hs(Xa, Y ), hs(X,Xa)) + ḡ(hs(ξ, Y ), Ds(X,N))

−
∑

α

ḡ(R̄(X,Wα)Y,Wα)− ḡ(R̄(X,N)Y, ξ),

where

TrAh(X,Y ) =
∑

a

{g(Ahs(X,Y )Xa, Xa) + g(Ahl(X,Y )Xa, Xa)}

+ ḡ(Ahs(X,Y )ξ,N) + ḡ(Ahl(X,Y )ξ,N).

Substituting (2.3) into (6.2) and making use of (3.7) ∼ (3.9) and (3.13), we
obtain
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Proposition 6.3. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f). Then the induced Ricci tensor R̆ic is given by

R̆ic(X,Y )

(6.4)

= −
∑

a

{ḡ(hs(Xa, Xa), h
s(X,Y )) + ḡ(h∗(Xa, Xa), h

l(X,Y ))}

+
∑

a

ḡ(hs(Xa, Y ), hs(X,Xa)) + g(ANX,A∗

ξY )− ḡ(Ds(ξ,N), hs(X,Y ))

+ µ{(m− 2)φXφY + η(Y )φXφξ}

+ {λ(1−m)− µ(1 +
∑

α

φ2
Wα

+ φNφξ)}ḡ(X,Y ).

Theorem 6.4. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of

Ln+1
1 (c, f) with m > 1. If M is irrotational, then

R̆ic(ξ, ξ) = 0, ∀ξ ∈ Γ(Rad(TM))

if and only if Ln+1
1 (c, f) is of constant curvature.

Proof. From (6.4) we get

R̆ic(ξ, ξ) = (m− 1)µφ2
ξ

with the aid of (3.12) and (4.2). The proof follows from this equation. �

Remark 6.5. In any two-dimensional Lorentzian manifold Ricci curvature al-
ways vanishes in any null direction ([2]).
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