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ON N (k)-QUASI EINSTEIN MANIFOLDS

MUKUT MANI TRIPATHI AND JEONG-SIK KIM

ABSTRACT. N(k)-quasi Einstein manifolds are introduced and studied.

1. Introduction

A non-flat Riemannian manifold (M™, g) is said to be a quasi Einstein man-
ifold [2] if its Ricci tensor S satisfies

(1.H SX,)Y)=ag(X,Y)+m(X)n(Y), X,YeTM

or equivalently, its Ricci operator ) satisfies

(1.2) Q=al+n®E

for some smooth functions a and b # 0, where 7 is a nonzero 1-form such that
(1.3) g(X=n(X), 9E&H=n()=1

for the associated vector field £. The 1-form 7 is called the associated 1-form
and the unit vector field £ is called the generator of the manifold. In an n-
dimensional quasi Einstein manifold the Ricci tensor has precisely two distinct
eigenvalues @ and a + b, where a is of multiplicity (n — 1) and a + b is simple
[2]. A proper n-Einstein contact metric manifold ([1], [5]) is a natural example
of a quasi Einstein manifold.

In this paper, we introduce the concept of N(k)-quasi Einstein manifolds.
In section 2, it is proved that conformally flat quasi Einstein manifolds are
certain N (k)-quasi Einstein manifolds. Semi-symmetric N(k)-quasi Einstein
manifolds are studied in section 3. A necessary and a sufficient condition for
an N(k)-quasi Einstein manifold to satisfy R(£,X) S = 0 are obtained in
section 4. In section 5, Ricci-recurrent quasi Einstein manifolds are studied. In
the last section, it is proved that a quasi-umbilical hypersurface of an N (/_c)—
quasi Einstein manifold, such that it is normal to the generator of the ambient
manifold, is an N (k)-quasi Einstein manifold.
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2. N(k)-quasi Einstein manifolds

The k-nullity distribution N (k) [7] of a Riemannian manifold M is defined
by

N(k):p— Np(k) ={Z € T,M | R(X,Y)Z =k(g(Y,Z2) X - g(X,2Z)Y)}
for all X,Y € TM, where k is some smooth function.
Motivated by the above definition, we give the following definition.

Definition 2.1. Let (M™, g) be a quasi Einstein manifold. If the generator
belongs to the k-nullity distribution N (k) for some smooth function k, then we
say that (M™,g) is an N(k)-quasi Einstein manifold.

Let (M™,g) be a quasi Einstein manifold. From (1.2) and (1.3), it follows
that

(2.1) S(X,6) = (a+b)n(X),
(2.2) Q¢ =(a+b)¢,
(2.3) r=na+b,

where 7 is the scalar curvature of M™.

In an n-dimensional Riemannian manifold (M™, g), the conformal curvature
tensor C is given by [8]

OX,Y)Z = R(X,Y)Z- —={g(V,2)QX ~g(X,2)QY
+S(Y,2)X - S(X,2)Y}

If (M™,g) is a conformally flat quasi Einstein manifold, then in view of (1.2),
(2.3) and (2.4) we have

_ (n—2)a-b
=2 (g (¥, 2)n(X)6 — g (X, Z2)n(¥ )
(2.5) + n(Y)n(Z2)X —n(X)n(2)Y}.
Putting Z = £, in the above equation, we obtain
(26) R(XY)E= 250 n(v)X —n(x)Y},

that is, in an n-dimensional conformally flat quasi Einstein manifold, the gen-

erator £ belongs to the (Zf{)-nullz‘ty distribution N (Z—f{) We can state this

fact as the following:
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Theorem 2.2. An n-dimensional conformally flat quasi Einstein manifold is
an N (afg>-quasi Einstein manifold.

n

Thus, we see that n-dimensional conformally flat quasi Einstein manifolds
are natural examples of N(k)-quasi Einstein manifolds. It is well-known that in
a 3-dimensional Riemannian manifold (M 3, g), the conformal curvature tensor
vanishes, therefore we have the following

Corollary 2.3. Each 3-dimensional quasi Einstein manifold is an N (”T“Lb)-
quasi Einstein manifold.

Let (M™, g) be an N(k)-quasi Einstein manifold. Then, we have

(2.7) R(Y,2)€=k(n(2)Y —n(Y)2).
The equation (2.7) is equivalent to

(2.8) R(&Y)Z=k(g(Y,2)§-n(2)Y).
In particular, the above equation implies that

(2.9) REY)E=k(n(Y)E-Y).

From (2.7) and (2.8), we have

(2.10) n(R({Y,2)§) =0,

(2.11) n(R(Y)Z)=k(g(Y,2)—n(Y)n(2)).

3. Semi-symmetric N (k)-quasi Einstein manifolds

As a generalization of locally symmetric spaces, many geometers have con-
sidered semi-symmetric spaces and in turn their generalizations. A Riemannian
manifold M is said to be semi-symmetric if its curvature tensor R satisfies

R(X,Y)-R=0, X,YeTM,

where R(X,Y") acts on R as a derivation. In this section, we study N (k)-quasi
Einstein manifolds M satisfying R(£,X) - R=0, X € TM.

First, we prove the following theorem.

Theorem 3.1. An N(k)-quasi Einstein manifold (M",g) satisfies R(£,X) -
R=0if and only if k = 0.

Proof. The condition R (£, X) - R = 0 implies that
0:[R(§7X)7R(Y7Z)]£_R(R(€7X)Y?Z)£—R(Y7R(§7X)Z)§7
which in view of (2.8) and (2.9) gives
0 = k{g(X,R(Y,2)§)§-n(X)R(Y,2)§+R(Y,2) X
—g(X,Y)R( Z2)§+n(Y)R(X,2)¢
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In view of (2.7), the above equation yields
0=k{R(Y,2)X -k(g(Z,X)Y —g(Y,X)Z)}.
Therefore, either £ =0 or
RY,NHNX=k(g(Z,X)Y —g(V,X)2Z).

In the second case, M™ becomes an Einstein space, which is not possible.
Thus we have k = 0. Conversely, if k& = 0, in view of (2.8) M™ satisfies
R(¢,X)- R=0. This completes the proof. O

As a Corollary, we have the following

Corollary 3.2. If (M™, g) is a semi-symmetric N (k)-quasi Finstein manifold,
then k= 0.

Now, we apply the above two results to conformally flat quasi Einstein man-
ifolds and in result we may state the following

Theorem 3.3. A conformally flat quasi Finstein manifold satisfies R (€, X) -
R =0 if and only if a + b = 0. In particular, each conformally flat semi-
symmetric quasi Einstein manifold satisfies a +b = 0.
4. N(k)-quasi Einstein manifolds satisfying R (¢, X)-S =0
First, we prove the following

Theorem 4.1. An N(k)-quasi Einstein manifold (M™,g) satisfies R(§,X) -
S =0 i and only if k = 0.

Proof. Let (M™,g) be a N(k)-quasi Einstein manifold. The condition R (€, X)-
S =0 gives

In view of (2.1) and (2.11), we get

(4.2) SREX)Y, ) =(a+b)k(g(X,Y) = n(X)n(Y)).
In view of (2.9) and (2.1) we have

(4.3) S(R(E,X)EY)=-kS(X,Y)+ (a+b)kn(X)n(Y).
From (4.1), (4.2) and (4.3), we have

(4.4) E{S—(a+b)g}=0.

Therefore, either k = 0 or S = (a+ b)g. In the second case, M™ becomes an
Einstein space, which is not possible. Thus we have & = 0. Conversely, if k =0
then in view of (2.8) M™ satisfies R (£, X)-S =0. O

As an application, we have the following

Theorem 4.2. A conformally flat quasi Einstein manifold satisfies R (£, X) -
S=0if and only ifa+b=0.
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5. Ricci-recurrent quasi Einstein manifolds

A non-flat Riemannian manifold M is called a Ricci-recurrent manifold [6)
if its Ricci tensor S satisfies the condition

(5.1) (Vx8)(¥,2) = A(X)S (Y, 2),

where V is Levi-Civita connection of the Riemannian metric g and A is a 1-form
on M.

Now, we prove the following
Theorem 5.1. If M is a Ricci-recurrent quasi Einstein manifold, then
(5.2) (a+b)A(X)=X(a+b), X eTM.
Proof. Using (5.1) in
(VxS (Y,Z2)=XS(Y,Z2) - S(VxY,Z) - S(Y,VxZ),
we get
AX)S(Y,2)=XS(Y,Z)-S(VxY,Z2)- S(Y,VxZ).
Putting Y = Z = ¢, in the above equation we obtain

S8 AX) =XS(£€) —25(VxE,6),
from which, in view of (2.1), we get (5.2). (|

A Ricci-recurrent manifold is Ricci-symmetric if and only if the 1-form A is
zero. Thus we have the following two corollaries:

Corollary 5.2. If M is a Ricci-symmetric quasi Einstein manifold, then a+b
158 constant.

Corollary 5.3. If M is a Ricci-recurrent quasi Einstein manifold and if a+ b
is constant, then either a + b = 0 or M reduces .o a Ricci-symmetric quasi
Einstein manifold.

6. Quasi-umbilical hypersurfaces

Let M™ be a hypersurface of a Riemannian manifold (M ntl g). We now
assume that M" is orientable and choose a unit vector field & of A"+ normal
to M™. Then Gauss and Weingarten formulae are given respectively by

(6.1) VxY =VxY +A(X,Y)E, (X,Y € TM™),

(6.2) Vxé=-HX,

where V and V are respectively the Riemannian and induced Riemannian
connections in M™*! and M™ and h is the second fundamental form related to
H by

(6.3) AX,Y) = g(HX,Y).
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M™ is called a quasi-umbilical hypersurface [3] if
64) AX,Y)=o0g(X,Y)+BuX)u(Y), X, YeTM"

where o and [ are some smooth functions and u is a 1-form. A quasi-umbilical
hypersurface becomes umbilical, geodesic or cylindrical according as § = 0,
a=0=Fora=0.

If M™ is a quasi-umbilical hypersurface of a Riemannian manifold (M™*1, g),
then the Gauss equation becomes [4]

R(X,Y,Z,W) = R(X,Y,Z,W)+a*(9(X,2)g(Y, W) —g(X,W)g(Y, Z))
+ofuY)u(W)g(X,Z)+u(X)u(Z)g(Y,W)

(6.5) —u(Y)u(Z)g(X,W) —u(X)u(W)g (Y, 2))

for all X,Y,Z, W € TM™. From the above equation, we get

S(X,Y) = R(X,Y,6)+S(X,Y)
(6.6) ~ (no? +aB) g (X,Y) — (n— 1) af u(X)u(Y),
where S and S are Ricci tensors of M"™+! and M™ respectively.

Now, we prove the following:

Theorem 6.1. If M™ is a quasi-umbilical hypersurface of an N (k)-quasi Ein-
stein manifold (M™, g}, such that M™ is normal to the generator & of M™+1,
then M™ is an N (k)-quasi Einstein manifold.

Proof. Using (2.8) in (6.6), we see that M™ is a quasi Einstein manifold. More-
over, using (2.7) in (6.5), we find that M™ is an NN (k)-quasi Einstein manifold,
where k =k + o (o + ). O

Remark 6.2. The above result is also true in the following cases (a) if M™ is
umbilical, geodesic or cylindrical and/or (b) M™*+! is a conformally flat quasi
Einstein manifold.
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