• Title/Summary/Keyword: k-$\varepsilon$ 방정식

Search Result 105, Processing Time 0.024 seconds

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior (히스테리시스 거동을 하는 탄성체의 비선형 점탄성 구성방정식)

  • Yoo, Sairom;Ju, Jaehyung;Choi, Seok-Ju;Kim, Dooman
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2016
  • An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20~80%, and frequencies of 0.02~0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

Study of the Secondary Flow Effect on the Turbulent Flow Characteristics in Fuel Rod Bundles (핵연료봉 주위의 난류 유동장 특성에 미치는 이차 유동의 영향에 대한 연구)

  • Lee, Kye-Bock;Jang, Ho-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 1994
  • Numerical Predictions including secondary flows have been Performed for fully developed turbulent single-phase rod bundle flows. The k-$\varepsilon$ turbulence model(two equation model) for the isotropic eddy viscosity, together with an algebraic stress model for generating secondary velocities, enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy and turbulent stresses. Comparisons with experiment hate shown that the influence of secondary motion on mean flow and turbulence is dearly evident. The convective transport effects of secondary flow on the velocity field have been identified.

  • PDF

Numerical Calculations of Three-dimensional Viscous Flows over a stern by the Semi-Elliptic Equations (준타원형 방정식에 의한 선미에서의 3차원 점성유동의 수치계산)

  • Shin-Hyoung,Kang;Keon-Je,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.11-23
    • /
    • 1989
  • A computer code has been developed to simulate three-dimensional viscous flows over a ship-stern. Semi-elliptic forms of Reynolds equations are adopted and numerically generated body-fitted coordinate systems are used to resolve complex geometries of the ship-hull. A standard form of $k-\varepsilon$ turbulence model is adopted for evaluation of the Reynolds stresses. Turbulent flows on a model with 3:1 elliptic sections and the SSPA-720 container ship model are predicted by using the code. Calculated pressure distributions of hull-surfaces and mean velocity distributions are generally in good agreements with measured values in wind-tunnels. But turbulent kinetic energies tend to be over-estimated near the stern in comparison with measured data.

  • PDF

Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Nonlinear k-ε Model (비선형 k-ε 모형을 이용한 부분 식생 개수로 흐름의 평균흐름 및 난류구조 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk;Kim, Taejoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.813-820
    • /
    • 2014
  • This study presents a numerical modeling of mean flow and turbulence structures of partly-vegetated open-channel flows. For this, Reynolds-averaged Navier-Stokes equations with vegetation drag terms are solved numerically using the non-linear k-${\varepsilon}$ model. The numerical model is applied to laboratory experiments of Nezu and Onitsuka (2001), and simulated results are compared with data from measurement and computations by Kang and Choi's (2006) Reynolds stress model. The simulation results indicate that the proposed numerical model simulates the mean flow well. Twin vortices are found to be generated at the interface between vegetated and non-vegetated zones, where turbulence intensity and Reynolds stress show their maximums. The model simulates the pattern of the Reynolds stress well but under-predicts the intensity of Reynolds stress slightly.

A Numerical Study of Diffusion Flames in Supersonic Flow (초음속 유동장 내의 확산 화염에 관한 수치 연구)

  • 김지호;윤영빈;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.17-17
    • /
    • 1997
  • 극초음속 여객기와 군사용 항공기에 대한 수요가 증가함에 따라서 새로운 개념의 다양한 추진기관이 연구가 진행되고 개발되어 왔다. 초음속 항공기의 속도 영역은 마하 10-20 정도가 되는데 이 속도 한계를 극복하기 위하여 초음속 연소 램제트 엔진(SCRamjet; Supersonic Combustion Ramjet)이 제안되었다. 스크램 제트를 개발하기 위해서는 연료와 산화제의 혼합 효율 문제, 화염의 안정화 문제, 벽면의 냉각에 관한 문제 등 몇 가지 기본적인 문제들을 해결해야 한다. Univ of Michigan에서 실험한 연소기를 모델로 본 연구에서는 연료와 공기의 혼합에 관한 수치 연구를 수행하였다. 다원 혼합기체에 관한 축대칭 Navier-Stokes 방정식을 지배 방정식을 이용하였고 비평형 화학반응식을 고려하였다. 공간 차분에는 유한 체적법을 이용하였다. 대류 플럭스 항은 Roe의 Upwind FDS 기법을 사용하여 차분하였고 점성항에는 중심 차분법을 이용하였다. 시간 적분법으로는 근사 자코비안과 LU분할 기법을 이용한 완전 내재적 방법이 쓰였다. 난류 모델로는 Mentor에 의해 제안된 2 방정식 k-$\varepsilon$/k-$\omega$ 혼합모델을 사용하였다. 유동장이 실험에서의 찍은 사진과 유사한 모습의 충격파 간섭을 수치 모사하였고 수소가 확산되는 모습과 함께 노즐 lip 주위의 재순환 영역에 대해서 살펴볼 수 있었다.

  • PDF

Evaluation of Two-Equation Turbulence Models with Surface Roughness Effect (표면 거칠기 효과를 고려한 2-방정식 난류 모델의 성능평가)

  • Yoon, Joon-Yong;Chun, Jung-Min;Kang, Seung-Kyu;Byun, Sung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1681-1690
    • /
    • 2003
  • The effect of roughness is a change in the velocity and turbulence distributions near the surface. Turbulence models with surface roughness effect are applied to the fully developed flow in a two-dimensional, rough wall channel. Modified wall function model, low-Reynolds number k-$\varepsilon$ model, and k-$\omega$ model are selected for comparison. In order to make a fair comparison, the calculation results are compared with the experimental data. The modified wall function model and the low-Reynolds number k-$\varepsilon$ model require further refinement, while the k-$\omega$ model of Wilcox performs remarkably well over a wide range of roughness values.

Numerical Investigations of Initiation mechanism of Longitudinal Bedforms in Open-Channel Flows (직사각형 개수로 흐름에서 횡방향 하상형상의 생성 메커니즘 분석)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.655-659
    • /
    • 2008
  • 본 연구에서는 3차원 수치모의를 통하여 횡방향 하상형상 및 격자형 이차흐름 구조의 생성 메커니즘을 분석하였다. 이를 위해 곡선좌표계에서의 지배방정식을 구성하고, 난류 폐합을 위해 Speziale(1987)가 제안한 비등방성 k-$\varepsilon$모형을 이용하였다. 또한 Exner 방정식을 이용하여 시간에 따른 하상변동을 예측하였다. 그 결과 바닥과 측벽 사이에서 발생되는 바닥 이차흐름의 하향류에 의해 측벽 부근부터 하상이 침식되고, 침식된 유사량은 이차흐름의 횡방향 유속에 의해 이동되어 퇴적되어, 결국 횡방향으로 연속적인 언덕 및 저면과 같인 하상형상이 생성되는 것으로 나타났다. 또한 시간에 따른 이차흐름 및 바닥 전단력, 하상고의 변화에 대해 살펴보았다.

  • PDF

Visous resistance analysis of a ship using numerical solutions (수치해를 이용한 선박의 점성저항 해석)

  • 곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.100-106
    • /
    • 1997
  • Viscous flow around an actual ship is calculated by an use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stress is modelled by using k-$\varepsilon$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the complex boundary of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implcit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the disssssssscretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). The subject ship model of actual calculation is 4,410 TEU class container carrier. For 4 geosim models the calculated viscous resistancce values are compared with the model test results and analyzed on their componentss. The resistance performance of an actual ship is predicted very resonably, so this mothod may be utilized as a design tool of hull form.

  • PDF

Numerical Study on Turbulent Flow and Heat Transfer in the Rocket Nozzle (로켓 노즐 내의 난류유동 및 열 전달에 관한 수치 해석적 연구)

  • 배주찬;이태호;강신형
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.73-81
    • /
    • 1997
  • Numerical analysis on turbulent flow and heat transfer in the rocket nozzle has been studied using the mass-weighted-averaged full Navier-Stokes equations, the Morkovin hypothesis on turbulent flow, the $\textsc{k}$-$\varepsilon$ turbulence model with the wall function specially designed to be able to consider the effects of pressure gradients, heat transfer and compressibility, and the numerical scheme of Karki. The present results are in good agreement with the experiments of Back et al.

  • PDF