DOI QR코드

DOI QR Code

표면 거칠기 효과를 고려한 2-방정식 난류 모델의 성능평가

Evaluation of Two-Equation Turbulence Models with Surface Roughness Effect

  • 윤준용 (한양대학교 기계공학과) ;
  • 천정민 (한양대학교 대학원 기계공학과) ;
  • 강승규 (한양대학교 대학원 기계공학과) ;
  • 변성준 (한양대학교 대학원 기계공학과)
  • 발행 : 2003.12.01

초록

The effect of roughness is a change in the velocity and turbulence distributions near the surface. Turbulence models with surface roughness effect are applied to the fully developed flow in a two-dimensional, rough wall channel. Modified wall function model, low-Reynolds number k-$\varepsilon$ model, and k-$\omega$ model are selected for comparison. In order to make a fair comparison, the calculation results are compared with the experimental data. The modified wall function model and the low-Reynolds number k-$\varepsilon$ model require further refinement, while the k-$\omega$ model of Wilcox performs remarkably well over a wide range of roughness values.

키워드

참고문헌

  1. Krishnappan, B. G., 1984, 'Laboratory Verification of a Turbulent Flow Model,' Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 4, pp. 500-514 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(500)
  2. Patel, V. C., Chon, J. T. and Yoon, J. Y., 1991, 'Turbulent Flow in a Channel with a Wavy Wall,' Journal of Fluids Engineering, ASME, Vol. 113, No. 4, pp. 579-586 https://doi.org/10.1115/1.2926518
  3. Patel, V. C., Rodi, W. and Scheuerer G., 1985, 'Turbulent Models for Near-Wall and Low Reynolds Number Flows : A Review,' AIAA J., Vol. 23, pp. 1308-1319 https://doi.org/10.2514/3.9086
  4. Tarada, R. P., 1990, 'Prediction of Rough-Wall Boundary Layers Using a Low Reynolds Number k-${\varepsilon}$ Model,' International Journal of Heat and Fluid Flow, Vol. 11, No. 4, pp. 331-345 https://doi.org/10.1016/0142-727X(90)90057-I
  5. Zhang, H., Fagfri, M. and White, F. M., 1996, 'A New Low-Reynolds Number k-${\varepsilon}$ Model for Turbulent Flow Over Smooth and Rough Surfaces,' Journal of Fluids Engineering, Vol. 118, pp. 255-259 https://doi.org/10.1115/1.2817371
  6. Wilcox, D. C., 1993, Turbulent Modeling for CFD, DCW Inc
  7. Cebeci, T., and Bradshaw, P., 1977, Monentum Transfer in Boundary Layers, Hemisphere Publishing Corporation
  8. Tani, J., 1987, Turbulent Boundary Layer Development over Rough Surfaces, Perspectives in Turbulent Studies, Springler
  9. White, F. M., 1991, Viscous Fluid Flow, McGraw-Hill, Inc., New York
  10. Nikuradse, J., 1950, 'Law of Flow in Rough Pipes,' National Advisory Committee for Aeronautics, NACA TM 1292 (Translation from VDI-Rorschungsheft 361, 1933)
  11. Schlichting, H., 1936, 'Experimentelle Untersuchungen zum Rauhigkeits-problem,' Ingenieur-Archiv., Vol. 7, pp. 1-34 https://doi.org/10.1007/BF02084166
  12. 'Experimental Investigation of the Problem of Surface Roughness,' NACA TM 823
  13. Patel, V. C., Rodi, W., and Scheuerer,G.,1985, 'Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review,' AIAA Journal, Vol. 23, pp. 1308-1319 https://doi.org/10.2514/3.9086
  14. Launder, B. E., and Sharma, B. I., 1974, 'Application of the Energy-Dissipation Modelof Turbulence to the Calculation of Flow Near a Spinning Disc,' Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138 https://doi.org/10.1016/0094-4548(74)90150-7
  15. Hoffmann, G. H., 1975, 'Improved Form of the Low-Reynolds Number k-${\varepsilon}$ Turbulence Model,' Physics of Fluids, Vol. 18, pp. 309-312 https://doi.org/10.1063/1.861138
  16. Lam, C. K. G., and Bremhorst, K., 1981, 'A Modified Form of the k-${\varepsilon}$ Model for Predicting Wall Turbulence,' Journal of Fluid Engineering, ASME, Vol. 103, pp. 456-460 https://doi.org/10.1115/1.3240815
  17. Reynolds, W. C., 1976, 'Computation of Turbulent Flows,' Annual Review of Fluid Mechanics, Vol. 8, pp. 183-208 https://doi.org/10.1146/annurev.fl.08.010176.001151
  18. Dutoya, D., and Michard, P., 1981, 'A Program for Calculating Boundary Layers along Compressor and Turbine Blades,' Numerical Methods in Heat Transfer, R. W. Lewis, K. Morgan, and O. C. Zienkiewicz, eds., Wiley, New York
  19. Hassid, S., and Poreh, M., 1978, 'A Turbulent Energy Dissipation Model for Flows with Drag Reduction,' Journal of Fluid Engineering, ASME, Vol. 100, pp. 107-112 https://doi.org/10.1115/1.3448580
  20. Chien, K. Y., 1982, 'Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds Number Turbulence Model,' AIAA Journal, Vol. 20, pp. 33-38 https://doi.org/10.2514/3.51043
  21. Nagano, Y., and Hishida, M., 1987, 'Improved Form of the k-${\varepsilon}$ Model for Wall Turbulent Shear Flows,' Journal of Fluids Engineering, ASME, Vol. 109, pp. 156-160 https://doi.org/10.1115/1.3242636
  22. Lam, C.K.G., and Bremhorst, K., 1981, 'A Modified Form of the k-${\varepsilon}$ Model for Predicting Wall Turbulence,' Journal of Fluids Engineering, ASME, Vol. 103, pp. 456-460 https://doi.org/10.1115/1.3240815
  23. Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill
  24. Journal of Fluid Engineering v.100 A Turbulent Energy Dissipation Model for Flows with Drag Reduction Hassid,S.;Poreh,M. https://doi.org/10.1115/1.3448580
  25. AIAA Journal v.20 Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds Number Turbulence Model Chien,K.Y. https://doi.org/10.2514/3.51043
  26. Journal of Fluid Engineering v.109 Improved Form of the k-ε Model for Wall Turbulent Shear Flows Nagano,Y.;Hishida,M. https://doi.org/10.1115/1.3242636
  27. Journal of Fluid Engineering v.103 A Modified Form of the k-ε Model for Prediction Wall Turbulence Lam,C.K.G.;Bremhorst,K. https://doi.org/10.1115/1.3240815
  28. Numerical Heat Transfer and Fluid Flow Patankar,S.V.

피인용 문헌

  1. Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics vol.35, pp.5, 2011, https://doi.org/10.5916/jkosme.2011.35.5.616