• Title/Summary/Keyword: iterative sequence

Search Result 150, Processing Time 0.032 seconds

Joint Transmitter and Receiver Optimization for Improper-Complex Second-Order Stationary Data Sequence

  • Yeo, Jeongho;Cho, Joon Ho;Lehnert, James S.
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is formulated in the time domain to find the optimal transmit and receive waveforms. The optimization problem is converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for the linear modulator is derived by introducing the notion of the impropriety frequency function of a discrete-time random process and by performing a line search combined with an iterative algorithm. The optimal solution shows that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about the origin due to the impropriety are well exploited.

Optimized and Portable FPGA-Based Systolic Cell Architecture for Smith-Waterman-Based DNA Sequence Alignment

  • Shah, Hurmat Ali;Hasan, Laiq;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • The alignment of DNA sequences is one of the important processes in the field of bioinformatics. The Smith-Waterman algorithm (SWA) performs optimally for aligning sequences but is computationally expensive. Field programmable gate array (FPGA) performs the best on parameters such as cost, speed-up, and ease of re-configurability to implement SWA. The performance of FPGA-based SWA is dependent on efficient cell-basic implementation-unit design. In this paper, we present an optimized systolic cell design while avoiding oversimplification, very large-scale integration (VLSI)-level design, and direct mapping of iterative equations such as previous cell designs. The proposed design makes efficient use of hardware resources and provides portability as the proposed design is not based on gate-level details. Our cell design implementing a linear gap penalty resulted in a performance improvement of 32× over a GPP platform and surpassed the hardware utilization of another implementation by a factor of 4.23.

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

RF Field Inhomogeneity Changes Depending on the Head Position in Parallel-Transmission Ultra-High-Field MRI (초고자장 병렬송신 MRI에서의 머리위치에 따른 RF 필드의 불균일도 비교)

  • Oh, J.S.;Hyun, J.H.;Seo, J.H.;Oh, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.486-488
    • /
    • 2008
  • 300 MHz가 넘는 초고자장 MRI에서는 송신 또는 수신 RF Magnetic Field 의 불균일도가 심해져서 이를 개선하기 위한 많은 방법들이 제안되고 있다. 그 중 가장 대표적인 방법은 $4{\sim}32$ 채널의 Transmit Array의 각 채널에 인가되는 전압과 위상을 변화시켜 RF Magnetic Field의 불균일도를 개선하는 방법이다. 본 논문에서는 Transmit Array 내부에서 머리위치의 변화에 따라 RF Magnetic Field ($B_1$ Field) 의 불균일도가 많이 변화하며 이에 따라 RF 송신용 전압과 위상의 Pattern을 새로 최적화 해야 함을 확인하였다. 또한 RF field Mapping을 하기 위해서 Composite RF Sequence를 사용한 Rapid Sequence의 사용과 채널 전압과 위상을 최적화하기 위해서 일반적인 Iterative 방식보다 간편하고 빠른 Target Method를 제안하였다. Driving 패턴의 최적화는 Complex 행렬식을 사용했으며 RF Magnetic Field ($B_1$ Field) 분포는 FDTD 방식으로 계산하였다.

  • PDF

Design Structure Matrix: A Model Proposal and Implementation on Harbor and Building Design Project

  • Akram, Salman;Kim, Jeonghwan;Pi, Seungwoo;Seo, Jongwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.144-152
    • /
    • 2013
  • Design is an iterative, generative, and multidisciplinary process by its nature. Iteration occurs often in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. Contrary to simple design, isolation of the generative iterations in complex design systems is very difficult, but reduction in overall iterations is possible. Design depends upon the information flow within domain and also among various design disciplines and organizations. Therefore, it is suggested that managers should be aware about the crucial iterations causing rework and optimal sequence as well. In this way, managers can handle design parameters related to such iterations pro-actively. There are a number of techniques to reduce iterations for various kinds of engineering designs. In this paper, parameter based Design Structure Matrix (DSM) is chosen. To create this DSM, a survey was performed and then partitioned using a model. This paper provides an easy approach to those companies involved in or intend to be involved in "design and build projects".

Doppler-shift estimation of flat underwater channel using data-aided least-square approach

  • Pan, Weiqiang;Liu, Ping;Chen, Fangjiong;Ji, Fei;Feng, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.426-434
    • /
    • 2015
  • In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).

Recognizing Static Target in Video Frames Taken from Moving Platform

  • Wang, Xin;Sugisaka, Masanori;Xu, Wenli
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.673-676
    • /
    • 2003
  • This paper deals with the problem of moving object detection and location in computer vision. We describe a new object-dependent motion analysis method for tracking target in an image sequence taken from a moving platform. We tackle these tasks with three steps. First, we make an active contour model of a target in order to build some of low-energy points, which are called kernels. Then we detect interest points in two windows called tracking windows around a kernel respectively. At the third step, we decide the correspondence of those detected interest points between tracking windows by the probabilistic relaxation method In this algorithm, the detecting process is iterative and begins with the detection of all potential correspondence pair in consecutive image. Each pair of corresponding points is then iteratively recomputed to get a globally optimum set of pairwise correspondences.

  • PDF

STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS

  • He, Xin-Feng;Xu, Yong-Chun;He, Zhen
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we consider an iterative scheme for finding a common element of the set of fixed points of a asymptotically quasi nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common fixed point of a asymptotically quasi-nonexpansive mapping and strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a asymptotically quasi-nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.

Design of a reduced-order $H_{\infty}$ controller using an LMI method (LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Chung, Soon-Hyun;Cheon, Jong-Min;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF