
I. INTRODUCTION

Bioinformatics is the convergence of diverse and often

divergent fields such as biology, mathematics, statistics,
computer science, and computer engineering. Bioinfor-
matics seeks to find answers to the all-relevant and all-
important question of the origin of life and the processes of
life. Bioinformatics takes a different perspective on life
depending on the scale or scope on which life is considered.
From the perspectives varying from molecular to organism
to evolution, one process lies at the heart of it all: sequence
alignment.

Sequence alignment is concerned with finding the relat-

edness of one sequence to another sequence. Relatedness
indicates whether the sequences are homologous and
whether they share a common domain and motifs or not.
Finding relationships among biological sequences helps
significantly in knowing concepts such as how proteins are
related to each other in an organism and to other organisms
with which this organism shares an evolutionary history,
thus providing significant insight into the meaning and
function of life. Moreover, sequence alignment has diverse
applications such as drug engineering, disease diagnostics,
detection of autoimmune disease, genetic engineering of
plants and animals, determination of the structure of
proteins, evolution tracing, and determination of protein

Received 17 September 2015, Revised 23 September 2015, Accepted 26 October 2015
*Corresponding Author Insoo Koo (E-mail: iskoo@ulsan.ac.kr, Tel: +82-52-259-1249)
School of Electrical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Korea.

 http://dx.doi.org/10.6109/jicce.2016.14.1.026 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 14(1): 26-34, Mar. 2016 Regular paper

Optimized and Portable FPGA-Based Systolic Cell
Architecture for Smith–Waterman-Based DNA Sequence
Alignment

Hurmat Ali Shah1, Laiq Hasan2, and Insoo Koo1*, Member, KIICE
1School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea
2Department of Computer Systems Engineering, University of Engineering & Technology, Peshawar, Pakistan

Abstract
The alignment of DNA sequences is one of the important processes in the field of bioinformatics. The Smith–Waterman
algorithm (SWA) performs optimally for aligning sequences but is computationally expensive. Field programmable gate array
(FPGA) performs the best on parameters such as cost, speed-up, and ease of re-configurability to implement SWA. The
performance of FPGA-based SWA is dependent on efficient cell-basic implementation-unit design. In this paper, we present
an optimized systolic cell design while avoiding oversimplification, very large-scale integration (VLSI)-level design, and
direct mapping of iterative equations such as previous cell designs. The proposed design makes efficient use of hardware
resources and provides portability as the proposed design is not based on gate-level details. Our cell design implementing a
linear gap penalty resulted in a performance improvement of 32× over a GPP platform and surpassed the hardware utilization
of another implementation by a factor of 4.23.

Index Terms: Bioinformatics, DNA sequence alignment, FPGA architecture, Smith–Waterman algorithm, Systolic cell

Open Access

 26

Optimized and Portable FPGA-Based Systolic Cell Architecture for Smith–Waterman-Based DNA Sequence Alignment

functions [1]. Sequence alignment compares two sequences
by calculating the distance between the sequences. This
distance represents the minimal cost at which one sequence
can be converted into another. A score is assigned to each
distance computed, and from this distance matrix, the degree
of similarity or correlation between the sequences is inferred.
For computing the abovementioned distance, two elementary
operations are used, namely substitution and insertion/
deletion (indel). Substitution signifies that one base in the
sequence is replaced by another, while indel represents the
insertion/deletion of a base into/from the sequence.

DNA is composed of four bases, namely adenine,
cytosine, thymine, and guanine. When aligning two
sequences, these bases are represented by the letters A, C, T,
and G, respectively. Strings of these letters form a DNA
sequence. Further, the basic alignment tool is the dot matrix.
In this type of alignment, one sequence is arranged row-
wise, while the other is arranged column-wise. A dot is
placed in the cell that corresponds to a match of the letters
of the row and the column.

As can be seen, DNA sequence alignment can be a very
tedious and resource-intensive operation because DNA
sequences can be millions of characters long and aligning
them by conventional methods is not possible. For the
alignment process to be meaningful, it needs to be
accelerated. Such acceleration can be carried by using either
software or hardware. Software acceleration employs
heuristic methods and hence, is not optimal. For optimal
acceleration, exact methods that compare each character
against every character of the other sequence are required.
Exact methods are very time consuming and resource
intensive. To achieve optimality, they need to be carried out
on dedicated hardware.

The Smith–Waterman algorithm (SWA) is an exact
sequence matching algorithm that performs optimally as it
can return local alignments and thus, provide considerably
accurate information about the similarity between sequences
that are aligned against each other [2]. SWA is a dynamic
programming-based algorithm that decomposes the
alignment problem into sub-problems and iteratively solves
the given problem [3]. SWA has the space and time
complexity of 𝑂𝑂(𝑀𝑀𝑀𝑀), where M and N denote the lengths
of the sequences to be aligned. The space and time
complexity is the best among other alignment methods and
provides accurate and local alignment [3].

SWA is a resource-intensive operation and thus, needs
dedicated hardware for efficient and fast operation.
Different hardware implementation candidates can be found,
such as FPGA, GPU, and cell BE platforms. In [4], a
comparison between the FPGA, GPU, and cell BE
reconfigurable platforms for aligning biological sequences
on the basis of speed, energy consumption, and devel-
opmental costs has been presented. Further, it has reported

that FPGA outperforms the other two platforms in terms of
performance per watt and performance per dollar spent. The
advantage of FPGA in high-performance computing is that,
if it is used as an accelerator, the computing density can be
increased significantly as FPGA benefits from the increased
clock speed as opposed to general microprocessors that have
reached their maximum clock speed [5].

Because of the low cost and speed-related advantages, all
recent hardware-based SWA implementations are carried out
on FPGAs [6]. The performance of an implementation on
FPGA depends upon the cell design that does the calculation
for SWA. This work focuses on designing an efficient
systolic cell for implementing SWA on FPGA. The main
objective of this work is to design a systolic cell that uses
relatively few hardware resources but at the same time, is
not designed on a low-level device/platform and does not
depend on the specific details of the low-level device/
platform. Therefore, the design can be implemented on any
other FPGA device or platform. Our implementation has a
trade-off between complexity and performance. Moreover, it
avoids both oversimplification and wastage of hardware
resources by avoiding a direct mapping of the iterative
equations to the hardware. This work should be considered
in a broader framework developed by [7] and focuses
particularly on designing a cell that optimally fits the system
design of [7].

The performance issues associated with the transfer of the
required data to FPGA and back has been studied by [8].
GPU platforms are explored in the same capacity as FPGA.
The authors in [9] studied the well-known seed-and-extend
algorithm to accelerate sequence alignment. Meaningful
alignment often requires the alignment of short DNA
sequences. The mechanisms and specifics of the alignment
of short DNA sequences are sometimes divergent with the
goals of the alignment of large sequences. The authors
in [10] developed a platform that through GPU could
accelerate the alignment of short sequences. Other
architectures are also explored for accelerating the
alignment of DNA sequences. In [11], a single instruction
multiple data (SIMD)-based architecture is implemented on
an application-specific instruction-set processor (ASIP) for
aligning DNA sequences.

The rest of this paper is organized as follows: Section II
discusses the SWA in detail. Section III presents the
principles on which the proposed cell design is based.
Section IV describes the proposed cell design. Section V
presents the results of this study, and Section VI concludes
the paper.

II. SMITH–WATERMAN ALGORITHM

Needleman–Wunch [12] presented an efficient algorithm

http://jicce.org 27

J. lnf. Commun. Converg. Eng. 14(1): 26-34, Mar. 2016

(NW algorithm) for aligning two sequences. The method
was exact and thus, produced optimal results. However, it
performed global alignments. Global alignments are good
when the sequences to be aligned are closely related as end-
to-end alignment highlights the similarity across their
lengths but they fail to perform optimally when the
sequences to be aligned do not have large homology. Smith
and Waterman presented a variant of the NW algorithm in
1984 and called it the Smith–Waterman algorithm (SWA)
[3]. SWA finds the local alignment and works well for
sequences that are distantly related as such sequences do not
manifest the overall similarity but have regions that have
concentrated local similarities.

Local alignments are carried out by making small
changes to the equations that perform global alignments.
SWA like the NW algorithm consists of three stages for
performing alignment, namely initialization, matrix fill, and
trace back. The initialization and matrix fill stages resemble
those of the NW algorithm, while the trace back stage
differs from that of the NW algorithm. These three stages
can be described as follows:

Initialization: Assume that we have two sequences x and y
of length i and j, respectively, are to be aligned. The
initialization step is different for the NW algorithm and
SWA in that the top row and the leftmost column are
initialized to 0 in the SWA, whereas in the NW algorithm,
the upper-rightmost element (0,0) is set to zero and the top
row and the leftmost column are initialized with the cost of
gap penalties of length i and j.

Matrix fill: In the matrix fill stage, two characters are
compared to each other and a score is assigned to the
comparison on the basis of (1), where 𝐹𝐹(𝑖𝑖, 𝑗𝑗) denotes the
element that is computed presently, 𝑠𝑠(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) represents the
similarity score that is selected on the basis of the similarity
between the two characters, while d indicates the gap
penalty.

𝐹𝐹(𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚 �

0,
𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1) + 𝑠𝑠(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦),

𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗) − 𝑑𝑑,
𝐹𝐹(𝑖𝑖, 𝑗𝑗 − 1) − 𝑑𝑑,

 (1)

(1) uses a linear gap penalty scheme as every gap is

penalized in the same way. A more biologically relevant
method for handling gaps is the affine gap model that
penalizes opening a gap more than extending an already
opened gap. Such a scheme is given in (2).

𝐻𝐻(𝑖𝑖, 𝑗𝑗) = max(0, 𝐻𝐻(𝑖𝑖 − 1, 𝑗𝑗 − 1) + 𝑆𝑆(𝑖𝑖, 𝑗𝑗), 𝐸𝐸(𝑖𝑖, 𝑗𝑗), 𝐹𝐹(𝑖𝑖, 𝑗𝑗)), (2)

𝐹𝐹(𝑖𝑖, 𝑗𝑗) = max(𝐻𝐻(𝑖𝑖 − 1, 𝑗𝑗) − 𝑜𝑜, 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗) − 𝑒𝑒), (3)

𝐸𝐸(𝑖𝑖, 𝑗𝑗) = max (𝐻𝐻(𝑖𝑖, 𝑗𝑗 − 1) − 𝑜𝑜, 𝐸𝐸(𝑖𝑖, 𝑗𝑗 − 1) − 𝑒𝑒). (4)

In (3) and (4), o denotes the gap opening penalty, while e
represents the gap extension penalty. The matrices 𝐹𝐹(𝑖𝑖, 𝑗𝑗)
and 𝐸𝐸(𝑖𝑖, 𝑗𝑗) contain the trace of opening and extending a
gap, respectively. 𝐹𝐹(𝑖𝑖, 𝑗𝑗) stores the cost for opening a gap
and extending a gap on sequence x, while 𝐸𝐸(𝑖𝑖, 𝑗𝑗) stores the
cost for opening and extending a gap on sequence y.

Trace back: In SWA, trace back starts from the element
that has the maximum score. Moving in the direction of the
cell that has the highest value, 0 is encountered and the
alignment is stopped. Indels are created; i.e., “―” is inserted
in the alignment for the vertical or horizontal selection of
the cell instead of the diagonal movement. In the affine gap
model, three separate matrices need to be stored, whereas in
trace back, all the matrices are searched to find the highest
value.

III. SYSTEM MODEL

Before presenting the system model, we will evaluate the
performance of the SWA used in the proposed design.

A. Performance Evaluation of SWA

SWA performs optimally on many performance indicators

such as accuracy, parallelism, and space and time
complexity [13]. SWA is considered the most optimal
because it performs the alignment of every individual
character in one sequence against every character in the
other sequence. This results in the massive space complexity
of 𝑂𝑂(𝑀𝑀𝑀𝑀), where M and N denote the sizes of the two
sequences, respectively. However, SWA also computes the
cell’s value independent of the reset of the matrix and
dependent only upon the three previous cells and the
similarity score.

Both fine-grained and coarse-grained parallelism can be
exploited in SWA. Fine-grained parallelism works on
making the required data available for a cell and then
computing the values of these cells in parallel; the values of
the three previous cells are available for this computation.
Coarse-grained parallelism is achieved by dividing the
alignment problem into sub-problems and solving the sub-
problems in parallel, thus reducing the overall time
complexity.

In calculations that are not parallel, computing the entire
matrix takes M × N cycles, which increases tremendously
with an increase in the sequence length. From Fig. 1, we can
see that diagonal elements in the matrix can be computed in
parallel; therefore, the time complexity can be reduced to
the number of diagonals in a matrix. There exist 𝑀𝑀 + 𝑁𝑁 − 1
diagonals in an array; therefore, two sequences having
lengths of M and N can be aligned in 𝑀𝑀 + 𝑁𝑁 − 1 cycles.

http://dx.doi.org/10.6109/jicce.2016.14.1.026 28

Optimized and Portable FPGA-Based Systolic Cell Architecture for Smith–Waterman-Based DNA Sequence Alignment

B. Systolic Cell Design for SWA

This section presents an efficient PE design for aligning

two sequences by using a linear systolic array (LSA) on
FPGA. The systolic array was introduced by Kung and
Leiserson [15]. Systolic arrays have proven to be sign-
ificantly efficient in parallelizing computing designs. These
arrays have been used for performing the complex function
of multiplying two long sequences: the sequences are
arranged in rows and columns, and two elements from the
sequences are multiplied by the PE in a systolic array. The
idea of systolic arrays was used by Lipton and Lopresti [16]
in 1985 for implementing the edit distance algorithm, a
standard global alignment algorithm for DNA sequences. In
1987, on the basis of the initial results, which showed an
improvement in speed in the order of hundreds to thousands
of times, Lopresti developed the first full-fledged system for
aligning nucleic sequences. This system was called P-NAC.
Further, BISP, Bio-Scan, B-Sys, Splash/Splash 2, and Kestrel
employ systolic arrays for aligning two sequences.

When SWA is mapped to a systolic array, each PE
computes one element of the alignment matrix at a time, and
an entire column is computed during the time span of the
entire operation. Further a PE array is mapped to the anti-
diagonal lines of the alignment matrix. A PE that is
composed of elements that perform simple operations such
as addition, subtraction, and comparison makes the design
very fast. The focus is always on making the PE simpler,
faster, and thus, more efficient. The overall system design is
adopted from our previous work as presented in [7]; the
corresponding block diagram is illustrated in Fig. 1.

To achieve the goal of designing an efficient PE, it is
imperative to reduce the area that a PE uses. Besides being
slow, oversized PEs waste significant hardware resources.
This reduces the available resources that can be used for
realizing a large number of PEs and hence, reducing the size
of the LSA. The size of the LSA controls the degree of
parallelism and thus, the speed-up achieved. Oversized PE
also adversely affects the clock frequency through which the
LSA operates. As the number of logic units increases in a
PE, the clock will need more time to traverse to the end,
subsequently affecting the rate at which the computation of
the PE can be completed.

Previous design methods of PE can be broadly categ-
orized into three categories: The first one oversimplifies the
design of PE. The second approach employs a direct
implementation of an iterative equation to the LSA. The
third approach attempts to carry out optimizations at the
VLSI level by integrating two PEs. All these approaches
have problems of their own. The first method calculates
only the edit distance between two sequences and thus,
results in non-used hardware resources. The second results
in an overuse of hardware resources, while the third results

in compatibility issues as such a design cannot be migrated
to other platforms.

Therefore, we need to come up with a design that avoids
all of the abovementioned pitfalls. A design which is not
overly-simplified and does not overuse resources, and which
is also compatible with other platforms is needed. The next
section looks at such a design for aligning two sequences by
using SWA with linear gap penalties.

IV. CELL DESIGN

This section presents the proposed design for SWA. First,

the cell design for SWA with a linear gap penalty is
presented, and then, the cell design for SWA with an affine
gap penalty is discussed.

A. PE Design for SWA with Linear Gap Penalty

A portable design that judiciously uses hardware is

possible if the iterative equations of SWA can be simplified
and captured in standard hardware description languages
(HDLs) such as Verilog. The major bottleneck with the
recursive equation of SWA is that the data precision of the
computed elements is very high. For the alignment of DNA
sequences, a data precision of 16 bits is used. The logic
units that a PE uses are very basic, such as adders and
comparators, but the size of these units increases the
hardware resources consumed by an individual PE.
Therefore, the size of the logic units needs to be reduced to
achieve an overall improvement in the hardware utilization.
If Lopresti’s observation is realized in the field of PE design,
significant savings in hardware usage can be achieved.

In 1985, Lipton and Lopresti [16] observed that the
values of the top element b and the left element c are
restricted to a certain distance from the corner element, i.e.,
a + 1 or a – 1. Therefore, the iterative equations of SWA can
be modified to accommodate this fact as in (5):

𝑎𝑎 = �
𝑎𝑎 𝑖𝑖𝑖𝑖 𝑏𝑏 𝑜𝑜𝑜𝑜 𝑐𝑐 = 𝑎𝑎 − 1 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑎𝑎 + 2 𝑖𝑖𝑖𝑖 𝑐𝑐 = 𝑎𝑎 + 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ≠ 𝑇𝑇𝑇𝑇 . (5)

In (5), S and T denotes the two sequences to be matched,

and i represents the index of both the sequences. In (5), the
intermediate values that are used for calculating the final
𝐹𝐹(𝑖𝑖, 𝑗𝑗) can be derived from the corner element. These new
values differ from the corner values by +1 or –1 or by 0.
Therefore, two bits can be used for representing them. The
calculations of the difference vectors are expressed in (6)
and (7);

𝐷𝐷(𝑖𝑖 − 1, 𝑗𝑗) = 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗)15:4 − 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1)15:4, (6)

𝐷𝐷(𝑖𝑖 − 1, 𝑗𝑗) = 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1)3:0 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (7)

http://jicce.org 29

J. lnf. Commun. Converg. Eng. 14(1): 26-34, Mar. 2016

The values as computed in (6) and (7) are used as
intermediate values, and thus, the adders and comparators
involved compare two inputs of two bits each instead of two
inputs of 16 bits each. The output 𝐷𝐷(𝑖𝑖, 𝑗𝑗) is added to
𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1)15:4 in order to obtain 𝐹𝐹(𝑖𝑖, 𝑗𝑗). Fig. 2 shows
the basic PE design for the SWA linear gap penalties. The
sequence comparison unit compares two characters, one
from each sequence, and generates a similarity score on the
basis of this comparison. The sequence Ns is shifted by one,
and the current Ns is buffered by one cycle as it is used in
the next PE after one clock cycle. The difference bits from
the left element and the diagonal elements are separated in

the first clock cycle. A subtraction unit subtracts the
diagonal element from the left element to obtain the
difference vector. This difference vector is used in the rest of
the calculations. The remaining 12 bits from the diagonal
element are added to the resultant difference vector in order
to obtain the value of the present cell. The final difference
vector is buffered for one clock cycle, and this buffered
value is used as the top element in the next clock cycle, as in
LSA. Then, in the next clock cycle, the lower value in the
column is computed by the PE. The value of the cell is
compared with Max_in, i.e., the global maximum, to find
the global maximum. This global maximum is then

Fig. 1. Block diagram of the overall system design.

Fig. 2. Cell for the linear gap penalty.

http://dx.doi.org/10.6109/jicce.2016.14.1.026 30

Optimized and Portable FPGA-Based Systolic Cell Architecture for Smith–Waterman-Based DNA Sequence Alignment

compared with the current maximum value of the cell,
which is stored in a buffer, and the greater of the two is
stored. This value is also forwarded to the next PE as the
global maximum. This optimized cell uses two-bit units
for computing the iterative equations of SWA. The last
adder that adds the bits from the diagonal element to the
difference vector is a 16-bit adder, and the comparators
that compute the global maximum and the maximum
value of the cell are 16 bit wide.

B. PE Design for SWA with Affine Gap Penalty

Affine gap models are used for aptly representing the

biological fact of the costliness of opening a gap than that of
extending it. An affine gap model penalizes opening a gap
more than extending an already opened one. (2)–(4) present
the Smith–Waterman iterative equations for affine gap
models. Fig. 3 presents the block diagram for an affine gap
penalty cell.

Two new units are added to calculate 𝐸𝐸(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹(𝑖𝑖, 𝑗𝑗).
𝐸𝐸(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹(𝑖𝑖, 𝑗𝑗) amortize the costs of opening new gaps
on the first sequence and the second sequence, respectively.
Difference bits are taken from the left element and are
subtracted from the value of the gap opening penalty, i.e., o,
while from 𝐸𝐸(𝑖𝑖 − 1, 𝑗𝑗) , the previous PE gap extension
penalty e is subtracted; then, both these values are compared
to find the difference vector for 𝐸𝐸(𝑖𝑖, 𝑗𝑗). The value of 𝐸𝐸(𝑖𝑖, 𝑗𝑗)
is forwarded to the next PE. The value of 𝐹𝐹(𝑖𝑖, 𝑗𝑗) need not
be taken as an input from the previous PE; instead, it is
generated in the current PE by itself. The current value of
𝐹𝐹(𝑖𝑖, 𝑗𝑗) is buffered as the value of the present difference

vector is delayed by one clock cycle in order to be used in
the next cycle for generating 𝐹𝐹(𝑖𝑖, 𝑗𝑗). From these values, o
and e are subtracted to generate the difference vectors of
𝐹𝐹(𝑖𝑖, 𝑗𝑗) . The maximum values of 𝐸𝐸(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹(𝑖𝑖, 𝑗𝑗) are
compared with the maximum of 0 and the difference vector
of the left element to find the current difference vector. To
this difference vector, the remaining bits of the diagonal
element are added to get the present value of the cell. The
calculation of the maximum value is the same as that of the
linear gap penalty cell.

V. RESULTS AND DISCUSSION

In order to reduce the cost incurred by acceleration
through FPGA, we implemented the design on low-cost
Spartan-3 FPGA, a product of Xilinx. Spartan-3 is a low-
priced device of Xilinx but is sufficient for implementing a
design of low–mid-level complexity. It does not contain
many logic slices to realize a high-performance design. It
does not allow the implementation of PEs in the order of
hundreds. The implementation of only a limited number of
PEs is allowed. This affects the overall speed-up achieved.
The speed-up achieved is at a cost incurred such as energy
consumption and hardware resources used, thus, a balance
has to be maintained between speed-up achieved and the
cost incurred.

The most often used performance metric for computational
biology applications is the number of cells updated per
second (CUPS), and it can be calculated as expressed in(8):

Fig. 3. Cell for affine gap penalty.

http://jicce.org 31

J. lnf. Commun. Converg. Eng. 14(1): 26-34, Mar. 2016

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (8)

The device that we used is Spartan 3 XC3S250E. We
could instantiate an array of PEs of size 35 on the said
device. The operating frequency shown by the post-place
and route simulation model was 50 MHz. The proposed cell
design implemented in the framework results in 1.75
GCUPS for the affine gap penalty cell and 2.75 for the
linear gap penalty cell. This is a 20× and 32× performance
improvement over the GPP implementation described in [4].
Table 1 presents the performance improvement.

The authors of [17] built highly customizable PEs for the
alignment of biological sequences on FPGA. They could
implement an array of PEs of size 13 on a Spartan 3 1500
chip. Table 2 presents the efficiency of the proposed design
in terms of the hardware utilization. The proposed design
more efficiently utilizes hardware as it can realize more PEs
by using limited hardware resources in contrast to the
implementation described in [5] that realized fewer PEs by
using a lot of the hardware resources available.

The number of PEs realized can be increased if our
memory utilization logic is not implemented and an UART
that directly sends the output is used. Performance can be
improved by using a device that has a higher clock speed
and has more hardware resources available.

Table 1. Performance improvement in terms of CUPS

Implementation Performance

DNA sequence alignment over GPP [4] 0.085 GCUPS
Proposed implementation with affine gap penalty
scheme

1.75 GCUPS

Performance improvement 20×
Proposed implementation with linear gap penalty
scheme

2.75 GCUPS

Performance improvement 32×

GCUPS: giga cell updated per second, GPP: general-purpose processor.

Table 2. Hardware utilization improvement

Implementation Device Size of PE
array

Customized processor for biological
sequence alignment on FPGA [17]

Spartan 3 1500

13

Proposed affine gap penalty scheme
design

Spartan 3 XC3S250

35

Proposed linear gap penalty scheme
design

Spartan XC3S250

55

Hardware utilization improvement
(linear gap penalty scheme) 4.23

Hardware utilization improvement
(linear gap penalty scheme)

 2.69

FPGA: field programmable gate array, PE: processing element.

Implement-ations such as the implementation described
in [18] achieve very high performance but at a very high
cost; further, the design cannot be implemented on any other
platform because it incorporates the VLSI-level details as in
contrast, the proposed system achieves comparable per-
formance at a very low cost.

VI. CONCLUSION

In this paper, we presented an efficient and low-hardware-

resource-consuming systolic cell design for implementing
SWA on FPGA. Cell design is the most important part of
designing an efficient and fast implementation of SWA on
FPGA because the actual matching takes place here.
Previous designs either oversimplified the cell design for
implementing the iterative equations or avoided optimi-
zation altogether and directly mapped the iterative equations
to the hardware. This resulted in either inflexibility or the
wastage of hardware resources.

The proposed design aimed at a trade-off between
flexibility and performance. Equivalent equations of the
iterative equations that require fewer iterations for the
implementation were used instead of the original iterative
equations. The results showed performance improvement
over a GPP implementation in the order of 32× for the linear
gap penalty scheme and of 20× for the affine gap penalty
scheme. Moreover, the results were compared with those of
a design that was implemented on a device that had more
hardware resources than our Spartan XC3S250. Further, we
showed that the proposed design surpassed the hardware
resource utilization of the other design by a factor of 4.29 in
the case of the linear gap penalty scheme.

REFERENCES

[1] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome,” Genome Biology, vol. 10, no. 3, article no. R25,
2006.

[2] L. Hasan, Z. Al-Ars, and S. Vassiliadis, “Hardware acceleration of
sequence alignment algorithms: an overview,” in Proceedings of
IEEE International Conference on Design and Technology of
Integrated Systems in Nanoscale Era (DTIS), Rabat, Moroco, pp.
92-97, 2007.

[3] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195-197, 1981.

[4] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian,
“High performance biological pairwise sequence alignment: FPGA
versus GPU versus cell BE versus GPP,” International Journal of
Reconfigurable Computing, vol. 2012, article no. 7, 2012.

http://dx.doi.org/10.6109/jicce.2016.14.1.026 32

Optimized and Portable FPGA-Based Systolic Cell Architecture for Smith–Waterman-Based DNA Sequence Alignment

[5] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and C. Kitchen,
An Overview of FPGAs and FPGA Programming: Initial
Experiences at Daresbury. Cheshire: Council for the Central
Laboratory of the Research Councils, 2006.

[6] M. Gok and C. Yilmaz, “Efficient cell designs for systolic smith-
waterman implementations,” in Proceedings of IEEE International
Conference on Field Programmable Logic and Applications
(FPL’06), Madrid, Spain, pp. 1-4, 2006.

[7] H. A. Shah, L. Hasan, and N. Ahmad, “An optimized and low-cost
FPGA-based DNA sequence alignment: a step towards personal
genomics,” in Proceedings of 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Osaka, Japan, pp. 2696-2699, 2013.

[8] T. Moorthy, J. M. Correa, and S. Gopalakrishnan, “Gigabyte-scale
alignment of biological sequences: a case study of IO bandwidth
reconfiguration for FPGA acceleration,” in Proceedings of 26th
Annual IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), Regina, SK, pp. 1-4, 2013.

[9] R. Wilton, T. Budavari, B. Langmead, S. J. Wheelan, S. Salzberg,
and A. Szalay, “Faster sequence alignment through GPU-
accelerated restriction of the seed-and-extend search space,”
BioRxiv, 2014 [Internet], Available: http://dx.doi.org/10.1101/
007641.

[10] Y. Liu and B. Schmidt, “GSWABE: faster GPU‐accelerated
sequence alignment with optimal alignment retrieval for short
DNA sequences,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 4, pp. 958-972, 2015.

[11] N. Neves, N. Sebastiao, A. Patricio, D. Matos, P. Tomas, P. Flores,
and N. Roma, “BioBlaze: multi-core SIMD ASIP for DNA
sequence alignment,” in Proceedings of 24th IEEE International
Conference on Application-Specific Systems, Architectures and
Processors (ASAP), Washington, DC, pp. 241-244, 2013.

[12] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443-
453, 1970.

[13] L. Hasan, “Hardware acceleration of biological sequence
alignment application,” Ph.D. dissertation, Delft University of
Technology, The Netherlands, 2011

[14] C. W. Yu, K. H. Kwong, K. H. Lee, and P. H. Leong, “A Smith-
Waterman systolic cell,” in New Algorithms, Architectures and
Applications for Reconfigurable Computing. New York, NY:
Springer, pp. 291-300, 2005.

[15] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI processor
arrays,” in Introduction to VLSI Systems. Reading, MA: Addison-
Wesley, pp. 271-292, 1980.

[16] R. J. Lipton and D. Lopresti, “A systolic array for rapid string
comparison,” in Proceedings of the Chapel Hill Conference on
VLSI, Chapel Hill, NC, pp. 363-376, 1985.

[17] T. Oliver, B. Schmidt, and D. Maskell, “Hyper customized
processors for bio-sequence database scanning on FPGAs,”
in Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field-Programmable Gate Arrays, Monterey, CA,
pp. 229-237, 2005.

[18] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the Smith-
Waterman algorithm on a reconfigurable supercomputing
platform,” in Proceedings of the 1st International Workshop on
High-Performance Reconfigurable Computing Technology and
Applications, Reno, NV, pp. 39-48, 2007.

received his M.Sc. and B.Sc. in Computer Systems Engineering from the University of Engineering and
Technology, Peshawar, Pakistan, in 2013 and 2010, respectively. He is currently pursuing his Ph.D. degree at the
Multimedia Communications System Laboratory, University of Ulsan, South Korea. His research interests include
secure spectrum sensing in cognitive radio networks, next-generation communications, and wireless sensor
networks.

received his Ph.D. in Computer Engineering from Delft University of Technology, Delft, The Netherlands, in 2011.
He received his M.Sc. and B.Sc. (with honors) in Electrical Engineering from the University of Engineering and
Technology, Peshawar, Pakistan, in 2003 and 2000, respectively. He worked as Visiting Researcher in Faculty of
Electrical Engineering Mathematics and Computer Science at Delft University of Technology, Delft, The
Netherlands. Currently, he is Chairman of the Department of Computer Systems Engineering at the University of
Engineering and Technology, Peshawar, Pakistan. His research interests include logic design, computer
architecture, bioinformatics, performance analysis, and optimization. Besides publishing a technical book and a
book chapter, he has authored and co-authored many research papers in journals of international repute. He has
also presented his research work at various international conferences.

http://jicce.org 33

http://dx.doi.org/10.1101/007641
http://dx.doi.org/10.1101/007641

J. lnf. Commun. Converg. Eng. 14(1): 26-34, Mar. 2016

received his B.E. degree from Konkuk University, Seoul, Korea, in 1996, and his M.S. and Ph.D. degrees from
Gwangju Institute of Science and Technology (GIST), Gwangju, Korea, in 1998 and 2002, respectively. From
2002 to 2004, he worked with Ultrafast Fiber-Optic Networks (UFON) Research Center in GIST, as a research
professor. For one year from September 2003, he was a visiting scholar at Royal Institute of Science and
Technology, Sweden. In 2005, he joined University of Ulsan, where he is now a full professor. His research
interests include next-generation wireless communication systems and wireless sensor networks.

http://dx.doi.org/10.6109/jicce.2016.14.1.026 34

	I. INTRODUCTION

