
I. INTRODUCTION 
 
Bioinformatics is the convergence of diverse and often 

divergent fields such as biology, mathematics, statistics, 
computer science, and computer engineering. Bioinfor-
matics seeks to find answers to the all-relevant and all-
important question of the origin of life and the processes of 
life. Bioinformatics takes a different perspective on life 
depending on the scale or scope on which life is considered. 
From the perspectives varying from molecular to organism 
to evolution, one process lies at the heart of it all: sequence 
alignment. 

Sequence alignment is concerned with finding the relat-

edness of one sequence to another sequence. Relatedness 
indicates whether the sequences are homologous and 
whether they share a common domain and motifs or not. 
Finding relationships among biological sequences helps 
significantly in knowing concepts such as how proteins are 
related to each other in an organism and to other organisms 
with which this organism shares an evolutionary history, 
thus providing significant insight into the meaning and 
function of life. Moreover, sequence alignment has diverse 
applications such as drug engineering, disease diagnostics, 
detection of autoimmune disease, genetic engineering of 
plants and animals, determination of the structure of 
proteins, evolution tracing, and determination of protein 
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Abstract 
The alignment of DNA sequences is one of the important processes in the field of bioinformatics. The Smith–Waterman 
algorithm (SWA) performs optimally for aligning sequences but is computationally expensive. Field programmable gate array 
(FPGA) performs the best on parameters such as cost, speed-up, and ease of re-configurability to implement SWA. The 
performance of FPGA-based SWA is dependent on efficient cell-basic implementation-unit design. In this paper, we present 
an optimized systolic cell design while avoiding oversimplification, very large-scale integration (VLSI)-level design, and 
direct mapping of iterative equations such as previous cell designs. The proposed design makes efficient use of hardware 
resources and provides portability as the proposed design is not based on gate-level details. Our cell design implementing a 
linear gap penalty resulted in a performance improvement of 32× over a GPP platform and surpassed the hardware utilization 
of another implementation by a factor of 4.23. 
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functions [1]. Sequence alignment compares two sequences 
by calculating the distance between the sequences. This 
distance represents the minimal cost at which one sequence 
can be converted into another. A score is assigned to each 
distance computed, and from this distance matrix, the degree 
of similarity or correlation between the sequences is inferred. 
For computing the abovementioned distance, two elementary 
operations are used, namely substitution and insertion/ 
deletion (indel). Substitution signifies that one base in the 
sequence is replaced by another, while indel represents the 
insertion/deletion of a base into/from the sequence. 

DNA is composed of four bases, namely adenine, 
cytosine, thymine, and guanine. When aligning two 
sequences, these bases are represented by the letters A, C, T, 
and G, respectively. Strings of these letters form a DNA 
sequence. Further, the basic alignment tool is the dot matrix. 
In this type of alignment, one sequence is arranged row-
wise, while the other is arranged column-wise. A dot is 
placed in the cell that corresponds to a match of the letters 
of the row and the column. 

As can be seen, DNA sequence alignment can be a very 
tedious and resource-intensive operation because DNA 
sequences can be millions of characters long and aligning 
them by conventional methods is not possible. For the 
alignment process to be meaningful, it needs to be 
accelerated. Such acceleration can be carried by using either 
software or hardware. Software acceleration employs 
heuristic methods and hence, is not optimal. For optimal 
acceleration, exact methods that compare each character 
against every character of the other sequence are required. 
Exact methods are very time consuming and resource 
intensive. To achieve optimality, they need to be carried out 
on dedicated hardware. 

The Smith–Waterman algorithm (SWA) is an exact 
sequence matching algorithm that performs optimally as it 
can return local alignments and thus, provide considerably 
accurate information about the similarity between sequences 
that are aligned against each other [2]. SWA is a dynamic 
programming-based algorithm that decomposes the 
alignment problem into sub-problems and iteratively solves 
the given problem [3]. SWA has the space and time 
complexity of 𝑂𝑂(𝑀𝑀𝑀𝑀), where M and N denote the lengths 
of the sequences to be aligned. The space and time 
complexity is the best among other alignment methods and 
provides accurate and local alignment [3]. 

SWA is a resource-intensive operation and thus, needs 
dedicated hardware for efficient and fast operation. 
Different hardware implementation candidates can be found, 
such as FPGA, GPU, and cell BE platforms. In [4], a 
comparison between the FPGA, GPU, and cell BE 
reconfigurable platforms for aligning biological sequences 
on the basis of speed, energy consumption, and devel-
opmental costs has been presented. Further, it has reported 

that FPGA outperforms the other two platforms in terms of 
performance per watt and performance per dollar spent. The 
advantage of FPGA in high-performance computing is that, 
if it is used as an accelerator, the computing density can be 
increased significantly as FPGA benefits from the increased 
clock speed as opposed to general microprocessors that have 
reached their maximum clock speed [5]. 

Because of the low cost and speed-related advantages, all 
recent hardware-based SWA implementations are carried out 
on FPGAs [6]. The performance of an implementation on 
FPGA depends upon the cell design that does the calculation 
for SWA. This work focuses on designing an efficient 
systolic cell for implementing SWA on FPGA. The main 
objective of this work is to design a systolic cell that uses 
relatively few hardware resources but at the same time, is 
not designed on a low-level device/platform and does not 
depend on the specific details of the low-level device/ 
platform. Therefore, the design can be implemented on any 
other FPGA device or platform. Our implementation has a 
trade-off between complexity and performance. Moreover, it 
avoids both oversimplification and wastage of hardware 
resources by avoiding a direct mapping of the iterative 
equations to the hardware. This work should be considered 
in a broader framework developed by [7] and focuses 
particularly on designing a cell that optimally fits the system 
design of [7]. 

The performance issues associated with the transfer of the 
required data to FPGA and back has been studied by [8]. 
GPU platforms are explored in the same capacity as FPGA. 
The authors in [9] studied the well-known seed-and-extend 
algorithm to accelerate sequence alignment. Meaningful 
alignment often requires the alignment of short DNA 
sequences. The mechanisms and specifics of the alignment 
of short DNA sequences are sometimes divergent with the 
goals of the alignment of large sequences. The authors 
in [10] developed a platform that through GPU could 
accelerate the alignment of short sequences. Other 
architectures are also explored for accelerating the 
alignment of DNA sequences. In [11], a single instruction 
multiple data (SIMD)-based architecture is implemented on 
an application-specific instruction-set processor (ASIP) for 
aligning DNA sequences. 

The rest of this paper is organized as follows: Section II 
discusses the SWA in detail. Section III presents the 
principles on which the proposed cell design is based. 
Section IV describes the proposed cell design. Section V 
presents the results of this study, and Section VI concludes 
the paper. 
 
 
II. SMITH–WATERMAN ALGORITHM 
 

Needleman–Wunch [12] presented an efficient algorithm 
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(NW algorithm) for aligning two sequences. The method 
was exact and thus, produced optimal results. However, it 
performed global alignments. Global alignments are good 
when the sequences to be aligned are closely related as end-
to-end alignment highlights the similarity across their 
lengths but they fail to perform optimally when the 
sequences to be aligned do not have large homology. Smith 
and Waterman presented a variant of the NW algorithm in 
1984 and called it the Smith–Waterman algorithm (SWA) 
[3]. SWA finds the local alignment and works well for 
sequences that are distantly related as such sequences do not 
manifest the overall similarity but have regions that have 
concentrated local similarities. 

Local alignments are carried out by making small 
changes to the equations that perform global alignments. 
SWA like the NW algorithm consists of three stages for 
performing alignment, namely initialization, matrix fill, and 
trace back. The initialization and matrix fill stages resemble 
those of the NW algorithm, while the trace back stage 
differs from that of the NW algorithm. These three stages 
can be described as follows: 

Initialization: Assume that we have two sequences x and y 
of length i and j, respectively, are to be aligned. The 
initialization step is different for the NW algorithm and 
SWA in that the top row and the leftmost column are 
initialized to 0 in the SWA, whereas in the NW algorithm, 
the upper-rightmost element (0,0) is set to zero and the top 
row and the leftmost column are initialized with the cost of 
gap penalties of length i and j. 

Matrix fill: In the matrix fill stage, two characters are 
compared to each other and a score is assigned to the 
comparison on the basis of (1), where 𝐹𝐹(𝑖𝑖, 𝑗𝑗) denotes the 
element that is computed presently, 𝑠𝑠(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) represents the 
similarity score that is selected on the basis of the similarity 
between the two characters, while d indicates the gap 
penalty. 
 

𝐹𝐹(𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚 �

0,
𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1) +  𝑠𝑠(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦),

𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗) −  𝑑𝑑,
𝐹𝐹(𝑖𝑖, 𝑗𝑗 − 1) −  𝑑𝑑,

    (1) 

 
(1) uses a linear gap penalty scheme as every gap is 

penalized in the same way. A more biologically relevant 
method for handling gaps is the affine gap model that 
penalizes opening a gap more than extending an already 
opened gap. Such a scheme is given in (2). 
 
𝐻𝐻(𝑖𝑖, 𝑗𝑗) = max(0, 𝐻𝐻(𝑖𝑖 − 1, 𝑗𝑗 − 1) +  𝑆𝑆(𝑖𝑖, 𝑗𝑗), 𝐸𝐸(𝑖𝑖, 𝑗𝑗), 𝐹𝐹(𝑖𝑖, 𝑗𝑗)), (2) 

𝐹𝐹(𝑖𝑖, 𝑗𝑗) = max(𝐻𝐻(𝑖𝑖 − 1, 𝑗𝑗) −  𝑜𝑜, 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗) − 𝑒𝑒),    (3) 

𝐸𝐸(𝑖𝑖, 𝑗𝑗) = max (𝐻𝐻(𝑖𝑖, 𝑗𝑗 − 1) − 𝑜𝑜, 𝐸𝐸(𝑖𝑖, 𝑗𝑗 − 1) − 𝑒𝑒).    (4) 

In (3) and (4), o denotes the gap opening penalty, while e 
represents the gap extension penalty. The matrices 𝐹𝐹(𝑖𝑖, 𝑗𝑗) 
and 𝐸𝐸(𝑖𝑖, 𝑗𝑗) contain the trace of opening and extending a 
gap, respectively. 𝐹𝐹(𝑖𝑖, 𝑗𝑗) stores the cost for opening a gap 
and extending a gap on sequence x, while 𝐸𝐸(𝑖𝑖, 𝑗𝑗) stores the 
cost for opening and extending a gap on sequence y.  

Trace back: In SWA, trace back starts from the element 
that has the maximum score. Moving in the direction of the 
cell that has the highest value, 0 is encountered and the 
alignment is stopped. Indels are created; i.e., “―” is inserted 
in the alignment for the vertical or horizontal selection of 
the cell instead of the diagonal movement. In the affine gap 
model, three separate matrices need to be stored, whereas in 
trace back, all the matrices are searched to find the highest 
value. 
 
 
III. SYSTEM MODEL 

 

Before presenting the system model, we will evaluate the 
performance of the SWA used in the proposed design. 

 
A. Performance Evaluation of SWA 

 
SWA performs optimally on many performance indicators 

such as accuracy, parallelism, and space and time 
complexity [13]. SWA is considered the most optimal 
because it performs the alignment of every individual 
character in one sequence against every character in the 
other sequence. This results in the massive space complexity 
of 𝑂𝑂(𝑀𝑀𝑀𝑀), where M and N denote the sizes of the two 
sequences, respectively. However, SWA also computes the 
cell’s value independent of the reset of the matrix and 
dependent only upon the three previous cells and the 
similarity score. 

Both fine-grained and coarse-grained parallelism can be 
exploited in SWA. Fine-grained parallelism works on 
making the required data available for a cell and then 
computing the values of these cells in parallel; the values of 
the three previous cells are available for this computation. 
Coarse-grained parallelism is achieved by dividing the 
alignment problem into sub-problems and solving the sub-
problems in parallel, thus reducing the overall time 
complexity. 

In calculations that are not parallel, computing the entire 
matrix takes M × N cycles, which increases tremendously 
with an increase in the sequence length. From Fig. 1, we can 
see that diagonal elements in the matrix can be computed in 
parallel; therefore, the time complexity can be reduced to 
the number of diagonals in a matrix. There exist 𝑀𝑀 + 𝑁𝑁 − 1 
diagonals in an array; therefore, two sequences having 
lengths of M and N can be aligned in 𝑀𝑀 + 𝑁𝑁 − 1 cycles. 
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B. Systolic Cell Design for SWA 
 
This section presents an efficient PE design for aligning 

two sequences by using a linear systolic array (LSA) on 
FPGA. The systolic array was introduced by Kung and 
Leiserson [15]. Systolic arrays have proven to be sign-
ificantly efficient in parallelizing computing designs. These 
arrays have been used for performing the complex function 
of multiplying two long sequences: the sequences are 
arranged in rows and columns, and two elements from the 
sequences are multiplied by the PE in a systolic array. The 
idea of systolic arrays was used by Lipton and Lopresti [16] 
in 1985 for implementing the edit distance algorithm, a 
standard global alignment algorithm for DNA sequences. In 
1987, on the basis of the initial results, which showed an 
improvement in speed in the order of hundreds to thousands 
of times, Lopresti developed the first full-fledged system for 
aligning nucleic sequences. This system was called P-NAC. 
Further, BISP, Bio-Scan, B-Sys, Splash/Splash 2, and Kestrel 
employ systolic arrays for aligning two sequences. 

When SWA is mapped to a systolic array, each PE 
computes one element of the alignment matrix at a time, and 
an entire column is computed during the time span of the 
entire operation. Further a PE array is mapped to the anti-
diagonal lines of the alignment matrix. A PE that is 
composed of elements that perform simple operations such 
as addition, subtraction, and comparison makes the design 
very fast. The focus is always on making the PE simpler, 
faster, and thus, more efficient. The overall system design is 
adopted from our previous work as presented in [7]; the 
corresponding block diagram is illustrated in Fig. 1. 

To achieve the goal of designing an efficient PE, it is 
imperative to reduce the area that a PE uses. Besides being 
slow, oversized PEs waste significant hardware resources. 
This reduces the available resources that can be used for 
realizing a large number of PEs and hence, reducing the size 
of the LSA. The size of the LSA controls the degree of 
parallelism and thus, the speed-up achieved. Oversized PE 
also adversely affects the clock frequency through which the 
LSA operates. As the number of logic units increases in a 
PE, the clock will need more time to traverse to the end, 
subsequently affecting the rate at which the computation of 
the PE can be completed. 

Previous design methods of PE can be broadly categ-
orized into three categories: The first one oversimplifies the 
design of PE. The second approach employs a direct 
implementation of an iterative equation to the LSA. The 
third approach attempts to carry out optimizations at the 
VLSI level by integrating two PEs. All these approaches 
have problems of their own. The first method calculates 
only the edit distance between two sequences and thus, 
results in non-used hardware resources. The second results 
in an overuse of hardware resources, while the third results 

in compatibility issues as such a design cannot be migrated 
to other platforms. 

Therefore, we need to come up with a design that avoids 
all of the abovementioned pitfalls. A design which is not 
overly-simplified and does not overuse resources, and which 
is also compatible with other platforms is needed. The next 
section looks at such a design for aligning two sequences by 
using SWA with linear gap penalties. 

 
 

IV. CELL DESIGN 
 
This section presents the proposed design for SWA. First, 

the cell design for SWA with a linear gap penalty is 
presented, and then, the cell design for SWA with an affine 
gap penalty is discussed. 
 
A. PE Design for SWA with Linear Gap Penalty 

 
A portable design that judiciously uses hardware is 

possible if the iterative equations of SWA can be simplified 
and captured in standard hardware description languages 
(HDLs) such as Verilog. The major bottleneck with the 
recursive equation of SWA is that the data precision of the 
computed elements is very high. For the alignment of DNA 
sequences, a data precision of 16 bits is used. The logic 
units that a PE uses are very basic, such as adders and 
comparators, but the size of these units increases the 
hardware resources consumed by an individual PE. 
Therefore, the size of the logic units needs to be reduced to 
achieve an overall improvement in the hardware utilization. 
If Lopresti’s observation is realized in the field of PE design, 
significant savings in hardware usage can be achieved. 

In 1985, Lipton and Lopresti [16] observed that the 
values of the top element b and the left element c are 
restricted to a certain distance from the corner element, i.e., 
a + 1 or a – 1. Therefore, the iterative equations of SWA can 
be modified to accommodate this fact as in (5): 

 

𝑎𝑎 = �
𝑎𝑎    𝑖𝑖𝑖𝑖 𝑏𝑏 𝑜𝑜𝑜𝑜 𝑐𝑐 = 𝑎𝑎 − 1 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑎𝑎 + 2   𝑖𝑖𝑖𝑖 𝑐𝑐 = 𝑎𝑎 + 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ≠ 𝑇𝑇𝑇𝑇 .       (5) 

 
In (5), S and T denotes the two sequences to be matched, 

and i represents the index of both the sequences. In (5), the 
intermediate values that are used for calculating the final 
𝐹𝐹(𝑖𝑖, 𝑗𝑗) can be derived from the corner element. These new 
values differ from the corner values by +1 or –1 or by 0. 
Therefore, two bits can be used for representing them. The 
calculations of the difference vectors are expressed in (6) 
and (7);  

 
𝐷𝐷(𝑖𝑖 − 1, 𝑗𝑗) = 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗)15:4 − 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1)15:4,  (6) 

𝐷𝐷(𝑖𝑖 − 1, 𝑗𝑗) = 𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1)3:0 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (7)  
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The values as computed in (6) and (7) are used as 
intermediate values, and thus, the adders and comparators 
involved compare two inputs of two bits each instead of two 
inputs of 16 bits each. The output 𝐷𝐷(𝑖𝑖, 𝑗𝑗)  is added to 
𝐹𝐹(𝑖𝑖 − 1, 𝑗𝑗 − 1)15:4 in order to obtain 𝐹𝐹(𝑖𝑖, 𝑗𝑗). Fig. 2 shows 
the basic PE design for the SWA linear gap penalties. The 
sequence comparison unit compares two characters, one 
from each sequence, and generates a similarity score on the 
basis of this comparison. The sequence Ns is shifted by one, 
and the current Ns is buffered by one cycle as it is used in 
the next PE after one clock cycle. The difference bits from 
the left element and the diagonal elements are separated in 

the first clock cycle. A subtraction unit subtracts the 
diagonal element from the left element to obtain the 
difference vector. This difference vector is used in the rest of 
the calculations. The remaining 12 bits from the diagonal 
element are added to the resultant difference vector in order 
to obtain the value of the present cell. The final difference 
vector is buffered for one clock cycle, and this buffered 
value is used as the top element in the next clock cycle, as in 
LSA. Then, in the next clock cycle, the lower value in the 
column is computed by the PE. The value of the cell is 
compared with Max_in, i.e., the global maximum, to find 
the global maximum. This global maximum is then 

 
Fig. 1. Block diagram of the overall system design. 
 

 

 

Fig. 2. Cell for the linear gap penalty. 
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compared with the current maximum value of the cell, 
which is stored in a buffer, and the greater of the two is 
stored. This value is also forwarded to the next PE as the 
global maximum. This optimized cell uses two-bit units 
for computing the iterative equations of SWA. The last 
adder that adds the bits from the diagonal element to the 
difference vector is a 16-bit adder, and the comparators 
that compute the global maximum and the maximum 
value of the cell are 16 bit wide. 

 
B. PE Design for SWA with Affine Gap Penalty 

 
Affine gap models are used for aptly representing the 

biological fact of the costliness of opening a gap than that of 
extending it. An affine gap model penalizes opening a gap 
more than extending an already opened one. (2)–(4) present 
the Smith–Waterman iterative equations for affine gap 
models. Fig. 3 presents the block diagram for an affine gap 
penalty cell. 

Two new units are added to calculate 𝐸𝐸(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹(𝑖𝑖, 𝑗𝑗). 
𝐸𝐸(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹(𝑖𝑖, 𝑗𝑗) amortize the costs of opening new gaps 
on the first sequence and the second sequence, respectively. 
Difference bits are taken from the left element and are 
subtracted from the value of the gap opening penalty, i.e., o, 
while from 𝐸𝐸(𝑖𝑖 − 1, 𝑗𝑗) , the previous PE gap extension 
penalty e is subtracted; then, both these values are compared 
to find the difference vector for 𝐸𝐸(𝑖𝑖, 𝑗𝑗). The value of 𝐸𝐸(𝑖𝑖, 𝑗𝑗) 
is forwarded to the next PE. The value of 𝐹𝐹(𝑖𝑖, 𝑗𝑗) need not 
be taken as an input from the previous PE; instead, it is 
generated in the current PE by itself. The current value of 
𝐹𝐹(𝑖𝑖, 𝑗𝑗) is buffered as the value of the present difference 

vector is delayed by one clock cycle in order to be used in 
the next cycle for generating 𝐹𝐹(𝑖𝑖, 𝑗𝑗). From these values, o 
and e are subtracted to generate the difference vectors of 
𝐹𝐹(𝑖𝑖, 𝑗𝑗) . The maximum values of 𝐸𝐸(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹(𝑖𝑖, 𝑗𝑗)  are 
compared with the maximum of 0 and the difference vector 
of the left element to find the current difference vector. To 
this difference vector, the remaining bits of the diagonal 
element are added to get the present value of the cell. The 
calculation of the maximum value is the same as that of the 
linear gap penalty cell. 

 
 

V. RESULTS AND DISCUSSION 
 

In order to reduce the cost incurred by acceleration 
through FPGA, we implemented the design on low-cost 
Spartan-3 FPGA, a product of Xilinx. Spartan-3 is a low-
priced device of Xilinx but is sufficient for implementing a 
design of low–mid-level complexity. It does not contain 
many logic slices to realize a high-performance design. It 
does not allow the implementation of PEs in the order of 
hundreds. The implementation of only a limited number of 
PEs is allowed. This affects the overall speed-up achieved. 
The speed-up achieved is at a cost incurred such as energy 
consumption and hardware resources used, thus, a balance 
has to be maintained between speed-up achieved and the 
cost incurred. 

The most often used performance metric for computational 
biology applications is the number of cells updated per 
second (CUPS), and it can be calculated as expressed in(8): 

 

  
Fig. 3. Cell for affine gap penalty. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (8) 
 

The device that we used is Spartan 3 XC3S250E. We 
could instantiate an array of PEs of size 35 on the said 
device. The operating frequency shown by the post-place 
and route simulation model was 50 MHz. The proposed cell 
design implemented in the framework results in 1.75 
GCUPS for the affine gap penalty cell and 2.75 for the 
linear gap penalty cell. This is a 20× and 32× performance 
improvement over the GPP implementation described in [4]. 
Table 1 presents the performance improvement. 

The authors of [17] built highly customizable PEs for the 
alignment of biological sequences on FPGA. They could 
implement an array of PEs of size 13 on a Spartan 3 1500 
chip. Table 2 presents the efficiency of the proposed design 
in terms of the hardware utilization. The proposed design 
more efficiently utilizes hardware as it can realize more PEs 
by using limited hardware resources in contrast to the 
implementation described in [5] that realized fewer PEs by 
using a lot of the hardware resources available. 

The number of PEs realized can be increased if our 
memory utilization logic is not implemented and an UART 
that directly sends the output is used. Performance can be 
improved by using a device that has a higher clock speed 
and has more hardware resources available.  

 
 

Table 1. Performance improvement in terms of CUPS 

Implementation Performance 

DNA sequence alignment over GPP [4] 0.085 GCUPS 
Proposed implementation with affine gap penalty 
scheme 

1.75 GCUPS 
 

Performance improvement 20× 
Proposed implementation with linear gap penalty 
scheme 

2.75 GCUPS 
 

Performance improvement 32× 

GCUPS: giga cell updated per second, GPP: general-purpose processor. 
 
 
Table 2. Hardware utilization improvement 

Implementation Device Size of PE 
array 

Customized processor for biological 
sequence alignment on FPGA [17] 

Spartan 3 1500 
 

13 
 

Proposed affine gap penalty scheme 
design 

Spartan 3 XC3S250 
 

35 
 

Proposed linear gap penalty scheme 
design 

Spartan XC3S250 
 

55 
 

Hardware utilization improvement 
(linear gap penalty scheme)  4.23 

 
Hardware utilization improvement 
(linear gap penalty scheme) 

 2.69 
 

FPGA: field programmable gate array, PE: processing element. 

Implement-ations such as the implementation described 
in [18] achieve very high performance but at a very high 
cost; further, the design cannot be implemented on any other 
platform because it incorporates the VLSI-level details as in 
contrast, the proposed system achieves comparable per-
formance at a very low cost. 

 
 

VI. CONCLUSION 
 
In this paper, we presented an efficient and low-hardware-

resource-consuming systolic cell design for implementing 
SWA on FPGA. Cell design is the most important part of 
designing an efficient and fast implementation of SWA on 
FPGA because the actual matching takes place here. 
Previous designs either oversimplified the cell design for 
implementing the iterative equations or avoided optimi-
zation altogether and directly mapped the iterative equations 
to the hardware. This resulted in either inflexibility or the 
wastage of hardware resources. 

The proposed design aimed at a trade-off between 
flexibility and performance. Equivalent equations of the 
iterative equations that require fewer iterations for the 
implementation were used instead of the original iterative 
equations. The results showed performance improvement 
over a GPP implementation in the order of 32× for the linear 
gap penalty scheme and of 20× for the affine gap penalty 
scheme. Moreover, the results were compared with those of 
a design that was implemented on a device that had more 
hardware resources than our Spartan XC3S250. Further, we 
showed that the proposed design surpassed the hardware 
resource utilization of the other design by a factor of 4.29 in 
the case of the linear gap penalty scheme. 
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