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Abstract:This paper deals with the problem of moving object detection and location in computer vision. We describe

a new object-dependent motion analysis method for tracking target in an image sequence taken from a moving

platform. We tackle these tasks with three steps. First, we make an active contour model of a target in order to build

some of low-energy points, which are called kernels. Then we detect interest points in two windows called tracking

windows around a kernel respectively. At the third step, we decide the correspondence of those detected interest

points between tracking windows by the probabilistic relaxation method In this algorithm, the detecting process is

iterative and begins with the detection of all potential correspondence pair in consecutive image. Each pair of

corresponding points is then iteratively recomputed to get a globally optimum set of pairwise correspondences.
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1. INTRODUCTION

Motion detection is made diécult as both the observer
and some elements of the scene may be moving. But
detecting objects from a moving platform is one of the
key issues to the successful applications of mobile system.
In recent year, interest in motion processing has in-

creased with advances in motion analysis methodology
and processing capabilities. The usual input to a motion
analysis system is a temporal image sequence, with a
corresponding increase in the amount of processed data.
Motion analysis is often connected with real-time analy-
sis, for example, for robot navigation. Another common
motion analysis problem is to obtain comprehensive in-
formation about moving and static objects present in a
scene. A set of assumption can help to solve motion
analysis problem-prior knowledge helps to decrease the
complexity of analysis. Prior knowledge includes infor-
mation about the camera motion, mobile or static, and
information about the time interval between consecutive
images, especially whether this interval was short enough
for the sequence to represent continuous motion. This
prior information about data helps on the choice of an
appropriate motion analysis technique.
There are three groups of motion-related problems from

the practical point of view: motion detection, moving ob-
ject detection and location and derivation of 3D object
properties. We will deal with the second group, etc. mov-
ing object detection and location.
The notable algorithms of objective from a moving

platform using a vision sensor camera use temporal or
spatial disparities estimated from the image sequence for
detection purpose. These algorithms can be grouped into
three classes:

è methods using optical çow;
è methods using qualitive estimates of motion;
è methods using velocity åeld.

Object motion parameter can be derived from computed
optical çow vectors [1][2]. But in reality, estimates of
optical çow or point correspondence are noisy, three-
dimensional interpretation of motion is ill-conditioned
and requires high precision of optical çow or point corre-
spondence.

To overcome this problem, motion åeld technique, which
is based on images acquired at intervals that are not short
enough to ensure small changes due to motion and can
be also acquired if the number of images in a sequence is
small, have appeared. Motion åled or velocity åeld com-
putations represent a compromise technique; information
similar to the optical çow is determined, but it is based
on images acquired at intervals that are not short enough
to ensure small changes due to motion. The velocity åeld
can also be acquired if the number of image in a sequence
is small.
Motion åeld analysis relies on distinctive characteris-

tics in diãerent frames and can be concluded into the
point or area correspondence analysis. So we discuss mo-
tion analysis problem based on tracking correspondence
parts in image sequence from a moving platform.

2. OVERVIEW

We present a new object-dependent algorithm that an-
alyzes the behavior of the objects in an image sequence
from a moving platform. We tackle these tasks with three
broad approaches. First, we make a model of a target or
object. This work is aimed at selecting some kernels
about the target/object based on prior knowledge, lim-
iting the target to a local area and also decreasing time
cost. Another advantage of this selection is that we can
estimate the object based on part of its kernels. We have
augmented the general idea of snake [3]. The principle of
detecting interest points around the kernels in an image
frame are introduced in the second part. The third part
of our strategy is a probabilistic relaxation method for
detecting the correspondence of feature points. In this
algorithm, the detecting process is iterative and begins
with the detection of all potential correspondence pair in
consecutive image. Each pair of corresponding points is
then iteratively recomputed to get a globally optimum
set of pairwise correspondences. Those feature points in
consecutive image are used to initialize active contours
as the input of next image frame. The part one and part
two's works are repeated until reaching a new converged
contour. An incomplete contour can also be established
by prior knowledge. This is also a clue for us to solve the
occlusion problems but not in this paper.



One of important diãerences between motion in mov-
ing camera or moving platform and static camera is that
all is moving in the former case and only object are mov-
ing in the later. We discuss the case of a camera on a
moving platform and the target/object is static on the
assumptions that motion is with maximum velocity con-
straint and mutual correspondence that each point of an
object corresponds to exactly one point in the next image
in sequence in this paper.
Our approach consist of building a contour model of

a target/object, and ånding corresponding key areas or
points in consecutive image which kernels appeared in
the model. To get a corresponding relation, the årst step
is to decide those interest points and seek optimal corre-
spondence or possible solutions. We denote I(x), x=(x,
y) and x2 R2, as any a frame in an image sequence and
the ith (i = 1; 2; . . . ; n) frame is Ii(x).

Fig. 1: An active contour model.

3. SNAKE MODEL

The traditional active contour model, snake, is deåned
as an energy minimizing spline{the snake energy depends
on its shape and location within an image. The energy
functional to be minimized may be written as:

EÉs =
Z 1

0

(Eint(v) + Eext(v))ds: (1)

where v=v(s)=[x(s), y(s)], x(s), y(s) are x, y co-ordinates
along the contour and s2[0, 1], v(s) can be approxi-
mated as a B-spline. Eint(v) represents the internal
energy of the spline due to bending. External energy
Eext(v) includes image forces Eim(v) and external con-
straint forces Ecst(v):

Eext(v)=Eim(v) + Ecst(v): (2)

Eim(v) is derived from the image data over which the
snake lies. Ecst(v) come from external constraints which
may force the snake toward or away from particular fea-
tures.
The functional to be minimized is (1). This minimizing

condition can reduce to
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]Ä 5Eext[v(s; t)] = 0: (3)

where ã(s), å(s) specify the elasticity and stiãness of the
snake. We given a snake contour with N nodes, ni=(ui,

wi), i = 1; 2; . . . ; N , the state of the snake is represented
by (u, w)=((u1, . . ., uN)T , (w1, . . ., wN )T ). The resolu-
tion above the Euler-Lagrange equation (3) can then be
written as:

AZ +ÜF=ÄçÅZ: (4)

where A=A(ã; å) is a pentadiagonal banded matrix that
depends on ã and åwhich control the internal spline en-
ergy of the snake. Z=Z(u, w), F denotes image external
force. We deåne Fim=Eim(v), and expend the snake
with a balloon force as Fb=Ecst (v), then ÜF=Fb+Fim.
After ç iteration steps, we can get new points (ut, wt)
from (utÄ1, wtÄ1). Fig.1 shows one of some results by
the described model.

4. INTEREST POINT DETECTOR

4.1 Contour code

We select two tracking windows with diãerent scales in
input space A0m ö Ii(x) and output space A0n ö Ij(x)
for the kernel0s geometric characteristics. The tracking
windows is made around every selected kernel that is the
center of mass in A0m. If any more than two of elements
of A0m in A0n are decided, the corresponding position of
the kernel in Ij(x) can be estimated. If some of cor-
responding points of the kernels are found in A0n, we
can also estimate all motion states in this new frame by
prior knowledge. Corresponding elements in A0m and A0n
are recognized by simple directive chain codes with their
neighborhoods. Fig.2 gives a example of this principle:
left shows there some points around a point P . If some
of these points are understood, the corresponding point
P in right can be located easily.

Fig. 2: Principle of chain code.

4.2 Behavior of orientation

We build up a transform relation H(x) in a local win-
dow about a point x as follows:

H(x)=<(x)ÉÉÇ(5I(x)(5I(x))TÉ: (5)

where I(x) is intensity function of the image, ÉÉ is the
convolution operation. <(x) is a weight mask to weight
the derivatives over the window. This matrix captures
the local structure. The eigenvectors of this matrix are
the principal curvatures of the auto-correlation function.
Its rank one indicates an edge and rank zero a homoge-
neous region. Two signiåcant values indicate the pres-
ence of an interest point. We consider a cost function
M(x) :

M(x)= t1det[H(x)] + t2trace[H(x)]: (6)

where t1, t2 are preset constants. The interest points
are decided by selecting a threshold about M (x). Fig.3
shows the detected results for an image by this method
in our experiments.



Fig. 3: Interest points of an selected image area. (a):
the input frame; (b): the output frame.

5. CORRESPONDENCE DETECTOR

After the process of interest point detection, we have
to decide the relation of those interest points between
A0m and A0n because the interest points cannot tell us
anything about their correspondences. Let Am=fxmg be
the set of all interest points in the årst starting image that
is input state space, and An = fyng the interest points in
the second image that is output state space. Let cmn be a
vector connecting points xm and yn. Two points xm and
yn can be considered potentially corresponding if their
distance satisåes the assumption of maximum velocity,
jxmÄynj î dmax, dmax is the maximum distance a point
may move in the time interval between two consecutive
images. Two correspondences of points xmyn and xkyl
are termed consistent of jcmnÄcklj î cdif , cdif is a preset
constant derived from prior knowledge. Consistency of
corresponding point pairs will increases the probability
that a correspondence pair is correct. We Determine the
sets of interest points Am ö A0m ö Ii(x), An ö A0n ö
Ij(x), and construct a data structure as follows:

[xm; fcmi ; Pmig; (NV É; NPÉ)]; i = 1; 2; . . . ; n: (7)

where Pmn is deåned as the probability of correspondence
of points xm and yn , NV É, and NPÉ are special symbols
indicating that no potential correspondence was found.
We initialize the probabilities Pmn as P

(0)
mn as follows:

P (0)mn=
1

1 + kp!mn
(1 Ä P (0)(NV É;NPÉ)): (8)

where P (0)(NV É;NPÉ) is the initialized probability of no cor-

Fig. 4: Detecting correspondences: 10 points in (a)
correspond with 7 points in (b). The star in (b)
labels an kernel position from the snake model.

respondence, kp is a constant and

!mn=
X
Ñ

[Im(xm Ü Ñ) Ä In(yn ÜÑ)]2: (9)

Ñ deånes a neighborhood for image match testing {a
neighborhood consists of all points (x+Ñ), Ñ is deåned as
a symmetric neighborhood around x. We iteratively de-
termine the probability of correspondence of a point xm
with all potential points yn as a weighted sum of prob-
abilities of correspondence of all consistent pairs xkyl,
xk are neighbors of xm and the consistency of xkyl is
evaluated according to xm, yn. A quality qmn of the
correspondence pair is deåned as

q(sÄ1)mn =
X
k

X
l

P (sÄ1)kl : (10)

where s denotes an iteration step, k refers to all points
xk that are neighbors of xm, and l refers to all points
yl 2 An that form pairs xkyl consistent with the pair
xmyn.
The probabilities of correspondence are updated for

each point pair xm, yn.

P̂ (s)mn=P
(sÄ1)
mn (ka + kbq

(sÄ1)
mn ): (11)

where ka and kb are preset constants. They deal with
the convergent speed of Pmn. Normalize

P (s)mn=
P̂ (s)mnP
j
P̂ (s)mj

: (12)



Those interest points that hold high probabilities that
obviously diãer from those interest points without corre-
spondences. Repeat (10) (11) and (12) until the P (s)mn>Pthr
(threshold) is found for all points xm, yn.

Fig. 5: Selected frames: the 11th frame is up and
the 15th down.

6. EXPERIMENTAL RESULTS

In this section, we give some of results based on the
presented method. We use two frames of a video im-
age to execute our experiments. The 11th and the 15th
frames are selected for the input/output as shown in
Fig.5. The active contour model has been shown in Fig.1.
The results detecting interest point and correspondence
are shown in Fig.3 and Fig.4 respectively. Fig.6 gives
the ampliåed eãects. There are diãerent points in input
frame and output frame, it means that more than one
points in Am corresponding to one points in An. We can
use the method in Section 4.1 to recognize them easily.
In this experiment, the parameters are N = 12, ã=0:6,
å=0:0, ç=25, Fim=g(5I(x)), Fb=0, g(:) is a function.
We select pixel distance in a time interval Dmax=37:5
pixels, Ddif=1 pixel, s=10, Pthr=0:70. The correspon-
dence points are decided with errors less than 5 pixels be-
cause our calculating image unit is 5 pixels. Fig.6 show
us very good detecting results. The results have been
good enough to analysis the motion features.

7. CONCLUSIONS

In the work, we proposed three processes of the method
to tracking a static object from a moving platform when
an camera is moving and an object is static: active con-
tour model, which uses estimates of kernel points at the
contour position, a interest point detection, which uses

Fig. 6: The ampliåed images. The up and down
images are the ampliåed (a) and (b) in Fig.4 respec-
tively.

kernel0s area, along with measures of auto-correlation
transform, as the system input measurement, and a prob-
abilistic relaxation method, which uses correspondence
pairs detection, as the former system output and the next
system input. This approach takes us another advantage
to occlusion problem, because the targets/objects can be
estimated by parts of their features.
In future work, we hope to rationalize the selection

visual cues used for object tracking based on prior im-
age knowledge, and to give the system some of learning
abilities.
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