• Title/Summary/Keyword: isolation and purification

Search Result 286, Processing Time 0.027 seconds

Isolation, Purification, and Identification of Taxol and Related Taxanes from Taxol-Producing Fungus Aspergillus niger subsp. taxi

  • Li, Dan;Fu, Dongwei;Zhang, Yue;Ma, Xueling;Gao, Liguo;Wang, Xiaohua;Zhou, Dongpo;Zhao, Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1379-1385
    • /
    • 2017
  • The content of taxol in the bark of yews is very low, and this is not affordable from the environmental point of view. Thus, it is a necessity to look for alternative sources of taxol production to solve its supply. Currently, a large portion of the taxol in the market comes from chemical semi-synthesis, but the semi-synthetic precursors such as baccatin III and 10-deacetyl-baccatin III are extracted from needles and twigs of yew trees. Taxol-producing fungi as a renewable resource is a very promising way to increase the scale of taxol production. Our group has obtained a taxol-producing endophytic fungus, Aspergillus niger subsp. taxi HD86-9, to examine if A. niger can produce the taxanes. Six compounds from the fermentation broth of strain HD86-9 were isolated and identified by $^1H$ NMR, $^{13}C$ NMR, and ESI-MS. The results showed that the six compounds included four taxane diterpenoids (taxol, cephalomannine, baccatin III, and 10-deacetyl-baccatin III) and two non-taxane compounds (${\beta}-sitosterol$ and flavonoid isovitexin). The study verified that the taxanes can be produced by the A. niger, which is very important to taxol production via chemical semi-synthesis. Additionally, the finding is potentially very significant to solve the taxol semi-synthetic precursors extracted from needles and twigs of yew trees, and the precursor production can be easily increased through the culture condition optimization, genetic breeding, and metabolic engineering of the A. niger.

Antibacterial Effect of Siegesbeckia pubescens Extract against Fish Pathogenic Streptococcus iniae (희렴(Siegesbeckia pubescens) 추출물의 어병세균 Streptococcus iniae에 대한 항균활성)

  • Choi, Bo La;Cho, Eun-Ji;Lee, Myeong Jin;Lee, Seong Hyun;Kim, Chae Eun;Oh, Se Young;Kim, Kyoung-Hoon;Jeong, Chang Hwa;Lim, Eun Seo;Kim, Tae Hoon;Lee, Eun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.678-682
    • /
    • 2016
  • Antibacterial activity of 80% methanol extract from 13 commercial herb medicines was measured against fish pathogens Streptococcus iniae, causing several diseases in various kind of fish. Siegesbeckia pubescens showed the strongest antibacterial activity against S. iniae. Methanol extract of S. pubescens was further extracted using several organic solvents having different polarity. Extract from n-hexane and ethyl acetate fraction showed strong activity. Minimal inhibitory concentration, MIC of S. pubescens extract was measured and resulted showing 8 μg/mL with n-hexane fraction and 32 μg/mL with ethyl acetate fraction against S. iniae. The growth of S. iniae was fully inhibited by adding 50 μg/mL (final concentration) of n-hexane or ethyl acetate fraction in the liquid media. It is needed that, from these results, purification and isolation of responsible active compound(s) of these activities and further study on the synergy effect using combination with commercial antibiotics against fish pathogenic bacteria.

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed;Shaik, Anver Basha;Kumar, C. Ganesh;Mongolla, Poornima;Rani, P. Usha;Krishna, K.V.S. Rama;Mamidyala, Suman Kumar;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.

Isolation and Purification of Decursin and Decursinol Angelate in Angelica gigas Nakai (참당귀(Angelica gigas Nakai) 중 Decursin 및 Decursinol Angelate의 분리 및 정제)

  • Kim, Kang-Min;Jung, Jae-Yeon;Hwang, Sung-Woo;Kim, Myo-Jeong;Kang, Jae-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.653-656
    • /
    • 2009
  • This paper is intended as an investigation of the method of extraction and the analysis by high-performance liquid chromatography mass spectroscopy of decursin and decursinol angelate in the dried root of Angelica gigas Nakai. The extracted decursin and decursinol angelate were the purity of >95% using 60% ethanol at $-20^{\circ}C$ for 12 hours by HPLC analysis. Decursin and decursinol angelate were efficiently isolated using recycling HPLC. The purity of isolated decursin and decursinol angelate was identified as 99.97 and 99.40% by HPLC analysis, respectively. The molecular weights of Decursin and decursinol angelate were also identified as m/z=329 ($[M+H]^+$) and m/z=351 ($[M+Na]^+$) by mass spectroscopy.

Antibacterial Activity of Rhus javanica against the Fish Pathogens Vibrio ichthyoenteri and Streptococcus iniae (오배자(Rhus javanica) 추출물의 어병세균 Vibrio ichthyoenteri와 Streptococcus iniae에 대한 항균활성)

  • Kim, Kyoung-Hoon;Kim, Ah Ra;Cho, Eun-Ji;Joo, Seong-Je;Park, Jong-Hoon;Moon, Ji-Young;Yum, Jong-Hwa;Kim, Tae Hoon;Kwon, Hyun-Ju;Lee, Hyun-Tai;Kim, Young-Man;Lee, Eun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • The antibacterial activities of methanol extracts of 19 commercial herbal medicines were measured against the fish pathogens Vibrio ichthyoenteri and Streptococcus iniae, which cause several fish diseases. Rhus javanica showed the strongest antibacterial activity against V. ichthyoenteri and S. iniae. The methanol extract of R. javanica was extracted further using several organic solvents with different polarities. The extract from the ethyl acetate fraction showed strong activity against both fish pathogens. The minimum inhibitory concentration (MIC) of the R. javanica extract was $32{\mu}g/mL$ for V. ichthyoenteri and $128{\mu}g/mL$ for S. iniae. Further purification and isolation of the active compound (s) responsible for these activities and further study of the synergistic effect using combinations of antibiotics against pathogenic bacteria are needed.

Isolation and Identification of Two Psoralen Derivatives as Antioxidative Compounds from the Aerial Parts of Angelica keiskei (신선초에 함유된 항산화활성물질 Psoralen 유도체들의 단리 및 동정)

  • Kim, So-Joong;Cho, Jeong-Yong;Wee, Ji-Hyang;Jang, Mi-Young;Rim, Yo-Sup;Kim, Cheol;Shin, Soo-Cheol;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.656-659
    • /
    • 2005
  • Hot water extracts of Angelica keiskei aerial parts were solvent-fractionated with ethyl acetate (EtOAc) and buffers (5% $NaHCO_3$, pH 8.0; 1.0 N HCl, pH 3.0) to obtain EtOAc-soluble acidic and neutral fractions. EtOAc-soluble neutral fraction was purified by Sephadex LH-20 column chromatography and reverse phase HPLC. Assay for purification of antioxidative compounds was performed by spraying DPPH solution on thin layer chromatography. Two isolated substances were identified as pseudoisopsoralen and 8-methoxypsoralen(xanthotoxin) by FAB-MS and NMR analyses.

Penicillium griseofulvum F1959, High-Production Strain of Pyripyropene A, Specific Inhibitor of Acyl-CoA: Cholesterol Acyltransferase 2

  • Choi, Jung-Ho;Rho, Mun-Chual;Lee, Seung-Woong;Choi, Ji-Na;Lee, Hee-Jeong;Bae, Kyung-Sook;Kim, Koan-Hoi;Kim, Young-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1663-1665
    • /
    • 2008
  • Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes cholesterol esterification and plays an important role in the intestinal absorption of cholesterol, hepatic production of lipoproteins, and accumulation of cholesteryl ester within cells. During the course of screening to find ACAT inhibitors from microbial sources, the present authors isolated pyripyropene A from Penicillium griseofulvum F1959. Pyripyropene A, an ACAT2-specific inhibitor, has already been produced from Aspergillus fumigatus. Yet, Aspergillus fumigatus is a pathogen and only produces a limited amount of pyripyropene A, making the isolation of pyripyropene A troublesome. In contrast, Penicillium griseofulvum F1959 was found to produce approximately 28 times more pyripyropene A than Aspergillus fumigatus, plus this report also describes the ideal conditions for the production of pyripyropene A by Penicillium griseofulvum F1959 and its subsequent purification.

Analysis of Organic Components and Osteoinductivity in Autogenous Tooth Bone Graft Material

  • Kim, Young-Kyun;Lee, Junho;Kim, Kyung-Wook;Um, In-Woong;Murata, Masaru;Ito, Katsutoshi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.353-359
    • /
    • 2013
  • Purpose: Extensive research is actively ongoing for development of an ideal bone substitute that meets the gold standard. Tooth was selected as a donor site for evaluation of potentials in bone substitutes based on its similar chemical compositions to alveolar bone. Previous studies have evaluated inorganic components of autogenous tooth bone graft material (AutoBT) and osteoconductivity. In continuation from the previous studies, the current study was conducted for analysis of organic components and evaluation of osteoinductivity of AutoBT. Methods: Forty-six extracted teeth were collected from actual patients (Korea Tooth Bank, R&D Institute). Extracted teeth were processed into AutoBT and implanted in dorsal subcutaneous muscular tissues of 15 athymic mice. Biopsy samples were harvested at two, five, and eight weeks. The Bradford assay, sodium dodecyl sulphate polyacrylamide gradient gel, and western blotting were performed for investigation of organic contents of AutoBT. Results: Histology analyses showed signs of new bone formation as early as two weeks. Results of the Bradford assay indicated the existence of noncollagenous proteins (NCP). 0.29% (2.89 mg/g) of proteins were extracted by weight in the root portion of AutoBT; 0.02% (0.029 mg/g) and 1.79% (17.93 mg/g) of proteins were measured by weight in crown and block-form of AutoBT, respectively. However, recombinant human bone morphogenetic protein-2 was not observed in AutoBT. Conclusion: Within the limitation of the current study, AutoBT induced new bone formation by NCP embedded in dentin.

Endo-1,4-β-xylanase B from Aspergillus cf. niger BCC14405 Isolated in Thailand: Purification, Characterization and Gene Isolation

  • Krisana, Asano;Rutchadaporng, Sriprang;Jarupan, Gobsuk;Lily, Eurwilaichitr;Sutipa, Tanapongpipat;Kanyawim, Kirtikara
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • During the screening of xylanolytic enzymes from locally isolated fungi, one strain BCC14405, exhibited high enzyme activity with thermostability. This fugal strain was identified as Aspergillus cf. niger based on its morphological characteristics and internal transcribed spacer (ITS) sequences. An enzyme with xylanolytic activity from BCC14405 was later purified and characterized. It was found to have a molecular mass of ca. 21 kDa, an optimal pH of 5.0, and an optimal temperature of $55^{\circ}C$. When tested using xylan from birchwood, it showed $K_m$ and $V_{max}$ values of 8.9 mg/ml and 11,100 U/mg, respectively. The enzyme was inhibited by $CuSO_4$, EDTA, and by $FeSO_4$. The homology of the 20-residue N-terminal protein sequence showed that the enzyme was an endo-1,4-$\beta$-xylanase. The full-length gene encoding endo-1,4-$\beta$-xylanase from BCC14405 was obtained by PCR amplification of its cDNA. The gene contained an open reading frame of 678 bp, encoding a 225 amino acid protein, which was identical to the endo-1,4-$\^{a}$-xylanase B previously identified in A. niger.

Isolation and Purification of Anticoagulant Polysaccharide Compound from Fermented Edible Brown Seaweed, Laminaria ochotensis

  • Nikapitiya Chamilani;Zoysa Mahanama De;Ekanayake Prashani Mudika;Park Ho-Jin;Lee Je-Hee
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Anticoagulant activities of a fermented edible brown alga, Laminaria ochotensis was investigated. L. ochotensis was fermented with 15% sugar (w/v) at $25^{\circ}C$ for 10 weeks. Anticoagulant activity was measured from the supernatant of algal mixture at biweekly intervals up to $10^{th}$ week by activated partial thromboplastin (APTT), prothrombin time (PT) and thrombin time (TT) assay using citrated human plasma. Sample having high APTT activity $(6^{th}\;week)$ was filtered, ethanol precipitated and freeze-dried. The polysaccharide compound having anticoagulant activity was purified by DEAE ion exchange chromatography followed by Sepharose-4B gel filtration chromatography. Anticoagulant activity, polysaccharide concentration, and heparin like activity were determined for the collected fractions by APTT, $phenol-H_2SO_4$, and glycosaminoglycan assay, respectively. The anticoagulant activity assay showed that the activity was increased up to $6^{th}$ week, and decreased thereafter. The concentration of our purified compound was $31.0{\mu}g/ml$ and showed higher APTT activity than commercial heparin. At the same concentration of $31.0{\mu}g/ml$, the heparin showed 186.5 sec activity while our purified compound showed an activity of 386 sec. Single spot on agarose gel electrophoresis showed that the compound was purified and polyacrylamide gel electrophoresis (PAGE) results revealed that the molecular mass of the purified polysaccharide compound was between 60 and 500 kDa. Therapeutic interest of the algal polysaccharide as an anticoagulant has recently been in highlighted. This purified anticoagulant compound from fermented L. ochotensis can be used as a model for anticoagulant agent or could be developed as an anticoagulant agent. This study can be extended to identify the structure and chemical composition of the purified polysaccharide, and to establish a relationship between structure and the function of the identified anticoagulant compounds.