DOI QR코드

DOI QR Code

Isolation, Purification, and Identification of Taxol and Related Taxanes from Taxol-Producing Fungus Aspergillus niger subsp. taxi

  • Li, Dan (Key Laboratory of Microbiology, School of Life Science, Heilongjiang University) ;
  • Fu, Dongwei (Heilongjiang Land Reclamation Bureau General Hospital) ;
  • Zhang, Yue (Key Laboratory of Microbiology, School of Life Science, Heilongjiang University) ;
  • Ma, Xueling (Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University) ;
  • Gao, Liguo (Key Laboratory of Microbiology, School of Life Science, Heilongjiang University) ;
  • Wang, Xiaohua (Heilongjiang University Library) ;
  • Zhou, Dongpo (Key Laboratory of Microbiology, School of Life Science, Heilongjiang University) ;
  • Zhao, Kai (Key Laboratory of Microbiology, School of Life Science, Heilongjiang University)
  • Received : 2017.01.09
  • Accepted : 2017.06.13
  • Published : 2017.08.28

Abstract

The content of taxol in the bark of yews is very low, and this is not affordable from the environmental point of view. Thus, it is a necessity to look for alternative sources of taxol production to solve its supply. Currently, a large portion of the taxol in the market comes from chemical semi-synthesis, but the semi-synthetic precursors such as baccatin III and 10-deacetyl-baccatin III are extracted from needles and twigs of yew trees. Taxol-producing fungi as a renewable resource is a very promising way to increase the scale of taxol production. Our group has obtained a taxol-producing endophytic fungus, Aspergillus niger subsp. taxi HD86-9, to examine if A. niger can produce the taxanes. Six compounds from the fermentation broth of strain HD86-9 were isolated and identified by $^1H$ NMR, $^{13}C$ NMR, and ESI-MS. The results showed that the six compounds included four taxane diterpenoids (taxol, cephalomannine, baccatin III, and 10-deacetyl-baccatin III) and two non-taxane compounds (${\beta}-sitosterol$ and flavonoid isovitexin). The study verified that the taxanes can be produced by the A. niger, which is very important to taxol production via chemical semi-synthesis. Additionally, the finding is potentially very significant to solve the taxol semi-synthetic precursors extracted from needles and twigs of yew trees, and the precursor production can be easily increased through the culture condition optimization, genetic breeding, and metabolic engineering of the A. niger.

Keywords

References

  1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. 1971. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325-2327. https://doi.org/10.1021/ja00738a045
  2. Liu WC, Gong T, Zhu P. 2016. Advances in exploring alternative taxol sources. RSC Adv. 6: 48800-48809. https://doi.org/10.1039/C6RA06640B
  3. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E. 2010. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330: 70-74. https://doi.org/10.1126/science.1191652
  4. Kim J, Doerr M, Kitchell BE. 2015. Exploration of paclitaxel (Taxol) as a treatment for malignant tumors in cats: a descriptive case series. J. Feline Med. Surg. 17: 186-190. https://doi.org/10.1177/1098612X14534436
  5. Roberts SC. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3: 387-395. https://doi.org/10.1038/nchembio.2007.8
  6. Long RM, Lagisetti C, Coates RM, Croteau RB. 2008. Specificity of the N-benzoyl transferase responsible for the last step of taxol biosynthesis. Arch. Biochem. Biophys. 477: 384-389. https://doi.org/10.1016/j.abb.2008.06.021
  7. Hirasuna TJ, Pestchanker LJ, Srinivasan V, Shuler ML. 1996. Taxol production in suspension cultures of Taxus baccata. Plant Cell Tiss. Org. 44: 95-102. https://doi.org/10.1007/BF00048185
  8. Mandai T, Kuroda A, Okumoto H, Nakanishi K, Mikuni K, Hara K. 2000. A semisynthesis of paclitaxel via a 10-deacetyl baccatin III derivative bearing a beta-keto ester. Tetrahedron Lett. 41: 243-246. https://doi.org/10.1016/S0040-4039(99)02056-0
  9. Wu J, Lin L. 2003. Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound methyl jasmonate and in situ solvent extraction. Appl. Microbiol. Biotechnol. 62: 151-155. https://doi.org/10.1007/s00253-003-1275-x
  10. Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214-216. https://doi.org/10.1126/science.8097061
  11. Xu D, Zhang BY, Yang XL. 2016. Antifungal monoterpene derivatives from the plant endophytic fungus Pestalotiopsis foedan. Chem. Biodivers. 13: 1422-1425. https://doi.org/10.1002/cbdv.201600114
  12. Malik S, Cusido RM, Mirjaliil MH, Moyano E, Palazon J, Bonfill M. 2011. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem. 46: 23-34. https://doi.org/10.1016/j.procbio.2010.09.004
  13. Ketchum REB, Croteau R. 2006. The Taxus metabolome and the elucidation of the taxol biosynthetic pathway in cell suspension cultures. Biotechnol. Agric. Forest. 57: 291-309.
  14. Xu M, Jin H, Dong J, Zhang M, Xu X, Zhou T. 2011. Abscisic acid plays critical role in ozone-induced taxol production of Taxus chinensis suspension cell cultures. Biotechnol. Prog. 27: 1415-1420. https://doi.org/10.1002/btpr.660
  15. Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214-216. https://doi.org/10.1126/science.8097061
  16. Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. 1996. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142: 2223-2226. https://doi.org/10.1099/13500872-142-8-2223
  17. Ganley RJ, Brunsfeld SJ, Newcombe G. 2004. A community of unknown, endophytic fungi in western white pine. Proc. Natl. Acad. Sci. USA 101: 10107-10112. https://doi.org/10.1073/pnas.0401513101
  18. Zhang CL, Liu SP, Lin FC, Kubicek CP, Druzhinina IS. 2007. Trichoderma taxi sp. nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol. Lett. 270: 90-96. https://doi.org/10.1111/j.1574-6968.2007.00659.x
  19. Deng BW, Liu KH, Chen WQ, Ding XW, Xie XC. 2009. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microbiol. Biotechnol. 25: 139-143. https://doi.org/10.1007/s11274-008-9876-2
  20. Kumaran RS, Muthumary J, Hur BK. 2009. Isolation and identification of an anticancer drug, taxol from Phyllosticta tabernaemontanae, a leaf spot fungus of an angiosperm, Wrightia tinctoria. J. Microbiol. 47: 40-49. https://doi.org/10.1007/s12275-008-0127-x
  21. Yoon JW, Kim JH. 2011. Establishment of a solvent map for formation of crystalline and amorphous paclitaxel by solvent evaporation process. Korean J. Chem. Eng. 28: 1918-1923. https://doi.org/10.1007/s11814-011-0060-2
  22. Zhou DP, Sun JQ, Yu HY, Ping WX. 2001. Nodulisporium, a genus new to China. Mycosystema 20: 277-278.
  23. Sun JQ, Zhou DP, Ping WX. 2013. A new species of the genus Pleurocytospora. Mycosystema 22: 12-13.
  24. Ge JP, Ping WX, Ma X, Zhou DP. 2004. Identification of taxol-producing strain HU1353. J. Microbiol. 24: 19-21.
  25. Zhao K, Zhao LF, Jin Y, Ping W, Zhou D. 2008. Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 27: 735-744.
  26. Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T, et al. 2009. Aspergillus niger subsp. taxi, a new species variant of taxolproducing fungus isolated from Taxus cuspidata in China. J. Appl. Microbiol. 107: 1202-1207. https://doi.org/10.1111/j.1365-2672.2009.04305.x
  27. Exposito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusido RM, et al. 2009. Biotechnological production of taxol and related taxoids: current state and prospects. Anti Cancer Agents Med. Chem. 9: 109-121. https://doi.org/10.2174/187152009787047761
  28. Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ. 2006. An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 5: 875-877.
  29. Jian ZY, Meng L, Xu GF, Zhou XR. 2013. Isolation of an endophytic fungus producing baccatin III from Taxus wallichiana var. mairei. J. Ind. Microbiol. Biotechnol. 40: 1297-1302. https://doi.org/10.1007/s10295-013-1320-4
  30. Wang Y, Tang K. 2011. A new endophytic taxol-and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 10: 16379-16386.
  31. Facundo VA, Azevedo MS, Rodrigues RV, do Nascimento LF, Militao JSLT, da Silva GVJ, et al. 2012. Chemical constituents from three medicinal plants: Piper renitens, Siparuna guianensis and Alternanthera brasiliana. Rev. Bras. Farmacogn. 22: 1134-1139. https://doi.org/10.1590/S0102-695X2012005000040
  32. Li YC, Yang J, Zhou XR, Zhao WE, Jian ZY. 2015. Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana. Appl. Biochem. Biotechnol. 175: 2224-2231. https://doi.org/10.1007/s12010-014-1422-0
  33. Liang ZK, Huang YY, Xie ZS, Xu XJ. 2015. Application of high-speed counter-current chromatography for isolation and purification of paclitaxel and related taxanes from Taxus chinensis cell culture. Sep. Sci. Technol. 50: 851-858. https://doi.org/10.1080/01496395.2014.976875
  34. Gokul Raj K, Manikandan R, Arulvasu C, Pandi M. 2015. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim. Acta A Mol. Biomol. Spectrosc. 138: 667-74. https://doi.org/10.1016/j.saa.2014.11.036
  35. Bhatt V, Sharma S, Kumar N, Sharma U, Singh B. 2016. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS. Pharm. Biomed. Anal. 132: 46-55.
  36. Tomasz M, Kazimierz G, Michal H. 2000. Screening for pharmaceutically important taxoids in Taxus baccata var. Aurea Corr. with CC/SPE/HPLC-PDA procedure. Biomed. Chromatogr. 14: 516-529. https://doi.org/10.1002/1099-0801(200012)14:8<516::AID-BMC15>3.0.CO;2-9
  37. Tatini LK, Rao NS, Khan M, Peraka KS, Reddy KVSRK. 2013. Concomitant Pseudopolymorphs of 10-deacetyl baccatin III. AAPS PharmSciTech 14: 558-568. https://doi.org/10.1208/s12249-013-9940-6
  38. Zielinska-Pisklak MA, Kaliszewska D, Stolarczyk M, Kiss AK. 2015. Activity-guided isolation, identification and quantification of biologically active isomeric compounds from folk medicinal plant Desmodium adscendens using high performance liquid chromatography with diode array detector, mass spectrometry and multidimentional nuclear magnetic resonance spectroscopy. Pharm. Biomed. Anal. 102: 54-63. https://doi.org/10.1016/j.jpba.2014.08.033
  39. Wei Y, Liu L, Zhou X, Lin J, Sun X, Tang K. 2012. Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr. J. Biotechnol. 11: 9094-9101.

Cited by

  1. Developments in taxol production through endophytic fungal biotechnology: a review vol.19, pp.1, 2019, https://doi.org/10.1007/s13596-018-0352-8
  2. Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1 vol.21, pp.1, 2020, https://doi.org/10.1186/s12864-019-6442-2
  3. A Compressive Review about Taxol ® : History and Future Challenges vol.25, pp.24, 2017, https://doi.org/10.3390/molecules25245986
  4. Hydantoin-bridged medium ring scaffolds by migratory insertion of urea-tethered nitrile anions into aromatic C-N bonds vol.12, pp.6, 2017, https://doi.org/10.1039/d0sc06188c
  5. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi vol.84, pp.3, 2017, https://doi.org/10.1021/acs.jnatprod.0c01195
  6. Triarylmethanes and their Medium‐Ring Analogues by Unactivated Truce–Smiles Rearrangement of Benzanilides vol.133, pp.20, 2017, https://doi.org/10.1002/ange.202102192
  7. Triarylmethanes and their Medium‐Ring Analogues by Unactivated Truce–Smiles Rearrangement of Benzanilides vol.60, pp.20, 2017, https://doi.org/10.1002/anie.202102192